Exit combustor flow and thermal fields entering downstream stator vane passages in a gas turbine engine are highly nonuniform. These flow and thermal fields can significantly affect the development of the secondary flows in the turbine passages contributing to high platform heat transfer and large aerodynamic losses. The flow and thermal fields combine to give nonuniform total pressure profiles entering the turbine passage which, along with the airfoil geometry, dictate the secondary flow field. This paper presents an analysis of the effects of varying total pressure profiles in both the radial and combined radial and circumferential directions on the secondary flowfields in a first-stage stator vane. These inlet conditions used for the first vane simulations are based on the exit conditions predicted for a combustor. Prior to using the predictions, these CFD simulations were benchmarked against flowfield data measured in a large-scale, linear, turbine vane cascade. Good agreement occurred between the computational predictions and experimentally measured secondary flows. Analyses of the results for several different cases indicate variations in the secondary flow pattern from pitch to pitch, which attributes to the rationale as to why some airfoils quickly degrade while others remain intact over time.

1.
Hermanson
,
K.
, and
Thole
,
K. A.
,
1999
, “
Effect of Inlet Profiles on Endwall Secondary Flows
,”
J. Propul. Power
,
16
, No.
2
, pp.
286
296
.
2.
Munk, M., and Prim, R. C., 1947, “On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern,” Proc., National Academy of Sciences, Vol. 33.
3.
Lakshminarayana
,
B.
,
1975
, “
Effects of Inlet Temperature Gradients on Turbomachinery Performance
,”
ASME J. Eng. Power
,
97
, p.
64
64
.
4.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
, p.
866
866
.
5.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
, p.
229
229
.
6.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
,
112
, pp.
488
496
.
7.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
, pp.
862
869
.
8.
Barringer
,
M. D.
,
Richard
,
O. T.
,
Walter
,
J. P.
,
Stitzel
,
S. M.
, and
Thole
,
K. A.
,
2002
, “
Flow Field Simulations of a Gas Turbine Combustor
,” ASME Paper 2001-GT-0170,
ASME J. Turbomach.
9.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
, No.
1
, pp.
64
71
.
10.
Shang, T., Guenette, G. R., Epstein, A. H., and Saxer, A. P., 1995, “The Influence of Inlet Temperature Distortion on Rotor Heat Transfer in a Transonic Turbine,” AIAA Pap., No. 95-36318.
11.
Stabe
,
R. G.
,
Whitney
,
W. J.
, and
Moffitt
,
T. P.
,
1984
, “
Performance of a High-Work Low Aspect Ratio Turbine Tested with a Realistic Inlet Radial Temperature Profile
,” NASA Technical Memorandum 83655,
AIAA Pap.
, No. 84-1161.
12.
Radomsky
,
R.
, and
Thole
,
K. A.
,
2000
, “
Highly Turbulent Flowfield Measurements Around a Stator Vane
,”
ASME J. Turbomach.
,
122
, pp.
255
262
.
13.
Radomsky
,
R.
, and
Thole
,
K. A.
,
2000
, “
High Freestream Turbulence Effects in the Endwall Leading Edge Region
,”
ASME J. Turbomach.
,
122
, pp.
699
708
.
14.
Kang
,
M.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
,
122
, pp.
458
466
.
15.
Hermanson
,
K.
, and
Thole
,
K. A.
,
2000
, “
Effect of Mach Number on Secondary Flow Characteristics
,”
Int. J. Turbo Jet Engines
,
17
, pp.
179
196
.
16.
Malecki, R. W., Rhie, C. M., McKinney, R. G., Ouyang, H., Syed, S. A., Colket, M. B., Madabhushi, R. K., 2001, “Application of An Advance CFD-Based Analysis System to the PW6000 Combustor to Optimize Exit Temperature Distribution—Part I: Description and Validation of the Analysis Tool,” ASME 2001-GT-0062.
17.
Liu, N. S., and Quealy, A., 1999, “NCC—A Multidisciplinary Design/Analysis Tool for combustion Systems,” NASA/CP-1999-208757, pp. 183–188.
18.
Fluent Inc., Fluent User’s Guide, Version 4.2., 1996, NH.
19.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.
20.
Yakhot
,
V.
,
Orszag
,
S.
,
Thangman
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), p.
1510
1510
.
21.
Crawford, M. E., “Simulation Codes for Calculation of Heat Transfer to Convectively-Cooled Turbine Blades,” set of 4 lectures in Convective Heat Transfer and Film Cooling in Turbomachinery, T. Arts, ed., Lecture Series 1986-06, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium.
22.
Kvasnak, W., 1997, personal communication.
23.
Boyle, R. J., and Giel, P. W., “Prediction of Nonuniform Inlet Temperature Effects on Vane and Rotor Heat Transfer,” ASME Paper 97-GT-133.
24.
Dorney
,
D. J.
,
Davis
,
R. L.
,
Edwards
,
D. E.
, and
Madavan
,
N. K.
,
1992
, “
Unsteady Analysis of Hot Streak Migration in a Turbine Stage
,”
J. Propul. Power
,
8
, No.
2
, pp.
520
529
.
You do not currently have access to this content.