This paper describes an investigation into the behavior of the pressure surface separation at midspan in a linear cascade. It is found that the pressure surface separation can be a significant contributor to the profile loss of a thin, solid, low-pressure turbine blade that is typical of current engine designs. Numerical predictions are first used to study the inviscid behavior of the blade. These show a strong incidence dependence around the leading edge of the profile. Experiments then show clearly that all characteristics of the pressure surface separation are controlled primarily by the incidence. It is also shown that the effects of wake passing, freestream turbulence and Reynolds number are of secondary importance. A simple two-part model of the pressure surface flow is then proposed. This model suggests that the pressure surface separation is highly dissipative through the action of its strong turbulent shear. As the incidence is reduced, the increasing blockage of the pressure surface separation then raises the velocity in the separated shear layer to levels at which the separation can create significant loss.

1.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
,
1996
, “
Development of Blade Profiles for Low Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
, pp.
531
538
.
2.
Yamamoto, A., Tominaga, J., Matsunuma, T., and Outa E., 1994, “Detailed Measurements of Three-Dimensional Flows and Losses Inside an Axial Turbine Rotor,” ASME Paper No. 94-GT-348.
3.
Hodson, H. P., and Addison, J. S., 1988, “Wake-Boundary Layer Interactions in an Axial Flow Turbine Rotor at Off-Design Conditions,” ASME Paper No. 88-GT-233.
4.
Scrivener, C. T. J., Connolly, C. F., Cox, J. C., and Dailey, G. M., 1991, “Use of CFD in the Design of a Modern Multistage Aero Engine LP Turbine Design,” I. Mech. E. Paper No. C423/056.
5.
Hodson
,
H. P.
, and
Dominy
,
R. G.
,
1987
, “
The Off-Design Performance of a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
109
, pp.
201
209
.
6.
Yamamoto
,
A.
, and
Nouse
,
H.
,
1988
, “
Effects of Incidence on Three-Dimensional Flows in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
, No.
4
, pp.
486
496
.
7.
He
,
L.
,
1998
, “
Unsteady Flow in Oscillating Turbine Cascades—Part 1: Linear Cascade Experiment
,”
ASME J. Turbomach.
,
120
, pp.
262
268
.
8.
Brear
,
M. J.
,
Hodson
,
H. P.
,
Gonzalez
,
P.
, and
Harvey
,
N. W.
,
2002
, “
Pressure Surface Separations in Low Pressure Turbines—Part 2: Interactions With the Secondary Flow” (2001-GT-438
),
ASME J. Turbomach.
,
124
,
402
409
.
9.
Brear, M. J., 2000, “Pressure Surface Separations in Low Pressure Turbines,” Ph. D dissertation, Cambridge University, Cambridge, UK.
10.
Howell, R. J., Ramesh, O. N., Hodson, H. P., Harvey, N. W., and Schulte V., 1999, “High Lift and Aft Loaded Profiles for Low Pressure Turbines,” ASME Paper No. 2000-GT-261, to appear in the ASME J. Turbomach.
11.
Drela, M., and Youngren, H., 1995, “A User’s Guide to Mises 2.3,” MIT Computational Aerospace Sciences Laboratory Report.
12.
Walraevens
,
R. E.
, and
Cumpsty
,
N. A.
,
1995
, “
Leading Edge Separation Bubbles on Turbomachine Blades
,”
ASME J. Turbomach.
,
117
, pp.
115
125
.
13.
Watmuff
,
J. H.
,
1999
, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
,
397
, pp.
119
169
.
14.
Hazarika
,
B. K.
, and
Hirsch
,
C.
,
1997
, “
Transition Over C4 Leading Edge and Measurement of Intermittency Factor Using PDF of Hot-Wire Signal
,”
ASME J. Turbomach.
,
119
, July, pp.
412
425
.
15.
Dovgal
,
A. V.
,
Kozlov
,
V. V.
, and
Michalke
,
A.
,
1996
, “
Laminar Boundary Layer Separation: Instability and Associated Phenomena
,”
Prog. Aerosp. Sci.
,
30
, pp.
61
94
.
16.
Fiedler
,
H. E.
, and
Fernholz
,
H. H.
,
1990
, “
On Management and Control of Turbulent Shear Flows
,”
Prog. Aerosp. Sci.
,
27
, pp.
305
387
.
17.
Castro
,
I. P.
, and
Epik
,
E.
,
1998
, “
Boundary Layer Development After a Separated Region
,”
J. Fluid Mech.
,
374
, pp.
91
116
.
18.
White, F. M., 1991, Viscous Fluid Flow, McGraw-Hill, 2nd Edition, New York, NY.
19.
Roshko
,
A.
,
1993
, “
Perspectives on Bluff Body Aerodynamics
,”
J. Wind. Eng. Ind. Aerodyn.
,
49
, pp.
101
120
.
20.
Horton, H. P., 1969, “A Semi-Empirical Theory for the Growth and Bursting of Laminar Separation Bubbles,” ARC current papers No. 1073.
21.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
, pp.
621
656
.
You do not currently have access to this content.