The original LP turbine of the BR715 engine featured “High Lift” blading, which achieved a 20-percent reduction in aerofoil numbers compared to blading with conventional levels of lift, reported in Cobley et al. (1997). This paper describes the design and test of a re-bladed LP turbine with new “Ultra High Lift” aerofoils, achieving a further reduction of approximately 11 percent in aerofoil count and significant reductions in turbine weight. The design is based on the successful cascade experiments of Howell et al. (2000) and Brunner et al. (2000). Unsteady wake-boundary layer interaction on these low-Reynolds-number aerofoils is of particular importance in their successful application. Test results show the LP turbine performance to be in line with expectation. Measured aerofoil pressure distributions are presented and compared with the design intent. Changes in the turbine characteristics relative to the original design are interpreted by making reference to the detailed differences in the two aerofoil design styles.

1.
Cobley, K., Coleman, N., Siden, G., and Arndt, N., 1997, “Design of New Three Stage Low Pressure Turbine for the BMW Rolls-Royce BR715 Engine,” ASME Paper No. 97-GT-419.
2.
Harvey
,
N. W.
,
Cox
,
J. C.
,
Schulte
,
V.
,
Howell
,
R.
, and
Hodson
,
H. P.
,
1999
, “
The Role of Research in the Aerodynamic Design of an Advanced Low-Pressure Turbine
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
213
,
Part A
Part A
.
3.
Hourmouziadis, J., 1989, “Aerodynamic Design of Low Pressure Turbines,” AGARD Lecture Series, 167.
4.
Hodson
,
H. P.
,
Huntsman
,
I.
, and
Steele
,
A.
,
1994
, “
An Investigation of Boundary Layer Development in a Multistage LP Turbine
,”
ASME J. Turbomach.
,
116
, pp.
375
383
.
5.
Hodson, H. P., Banieghbal, M. R., and Dailey, G. M., 1994, “The Analysis and Prediction of the Effects of Bladerow Interactions in Axial Flow Turbines,” IMechE Conf. Turbomachinery, Oct.
6.
Banieghbal, M. R., Curtis, E. M., Denton, J. D., Hodson, H. P., Huntsman, I., Schulte, V., Harvey, N. W., and Steele, A. B., 1995, “Wake Passing in LP Turbine Blades,” AGARD CP-571.
7.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
,
1997
, “
Development of Blade Profiles for LP Turbine Applications
,”
ASME J. Turbomach.
,
119
, pp.
531
538
.
8.
Schulte, V., and Hodson, H. P., 1994, “Wake Separation Bubble Interaction in Low Pressure Turbines,” Paper No. AIAA-94-2931.
9.
Schulte
,
V.
, and
Hodson
,
H. P.
,
1998
, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,”
ASME J. Turbomach.
,
120
, pp.
28
35
.
10.
Schulte
,
V.
, and
Hodson
,
H. P.
,
1998
, “
Prediction of the Becalmed Region for LP Turbine Profile Design
,”
ASME J. Turbomach.
,
120
, pp.
839
846
.
11.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines. Parts 1–4
,”
ASME J. Turbomach.
,
119
, pp.
114
126
.
12.
Hodson, H. P., 1998, “Blade Row Interactions in Low Pressure Turbines,” VKI Lecture Series 1998-02, “Blade Row Interference Effects in Axial Flow Turbomachinery Stages.”
13.
Hodson, H. P., and Howell, R. J., 2000, “Unsteady Flow: Its Role in the Low Pressure Turbine,” Minnowbrook III, Workshop on Boundary Layer Transition in Turbomachines, Syracuse University.
14.
Brunner, S., Fottner, L., and Schiffer, H.-P., 2000, “Comparison of Two Highly Loaded Low Pressure Turbine Cascades under the Influence of Wake-Induced Transition,” ASME Paper No. 2000-GT-268.
15.
Howell, R. J., 1999, “Wake Separation Bubble Interaction on Low Reynolds Number Turbomachinery,” PhD Thesis, Cambridge University.
16.
Howell
,
R. J.
,
Ramesh
,
O. N.
,
Hodson
,
H. P.
,
Harvey
,
N. W.
, and
Schulte
,
V.
,
2001
, “
High Lift and Aft Loaded Profiles for Low Pressure Turbines
,”
ASME J. Turbomach.
,
123
, pp.
181
188
.
17.
Brear, M., 2000, “Pressure Surface Separations in Low Pressure Turbines,” PhD Thesis, Cambridge.
18.
Duden, A., Raab, I., and Fottner, L., 1999, “Controlling the Secondary Flow in a Turbine Cascade by Three-Dimensional Airfoil Design and End Wall Contouring,” ASME J. Turbomach., 121, pp. 191–200.
19.
Scrivener, C. T. J., Connolly, C. F., Cox, J. C., and Dailey, G. M., 1991, “Use of CFD in the Design of a Modern Multistage Aero Engine LP Turbine Design,” [AUTHOR PLEASE UPDATE].
20.
Howell, R. J., Hodson, H. P., Schulte, V., Schiffer, H.-P., Haselbach, F., and Harvey, N. W., 2002, “Boundary Layer Development in the BR710 and BR715 LP Turbines—The Implementation of High Lift and Ultra High Lift Concepts,” ASME J. Turbomach., in press.
21.
Ashpis, D., 1997, “Low Pressure Turbine Flow Physics Program,” Minnowbrook II, Workshop on Boundary Layer Transition in Turbomachines, Syracuse University.
22.
Brear, M. J., Hodson, H. P., Gonzalez, P., and Harvey, N. W., 2002, “Pressure Surface Separations in Low Pressure Turbines: Part 1—Midspan Behavior,” ASME J. Turbomach., in press.
23.
Brear, M. J., Hodson, H. P., and Harvey, N. W., 2002, “Pressure Surface Separations in Low Pressure Turbines—Part 2: Interactions With Secondary Flow,” ASME J. Turbomach., in press.
You do not currently have access to this content.