The unsteady flow in stator–rotor interactions affects the structural integrity, aerodynamic performance of the stages, and blade-surface heat transfer. Numerous viscous and inviscid computer programs are used for the prediction of unsteady flows in two-dimensional and three-dimensional stator–rotor interactions. The relative effects of the various components of flow unsteadiness on heat transfer are under investigation. In this paper it is shown that for subsonic cases, the reduced frequency parameter for boundary-layer calculations is about two orders of magnitude smaller than the reduced frequency parameter for the core flow. This means that for typical stator–rotor interactions, the unsteady flow terms are needed to resolve the location of disturbances in the core flow, but in many cases the instantaneous disturbances can be input in steady-flow boundary-layer computations to evaluate boundary-layer effects in a quasi-steady approximation. This hypothesis is tested by comparing computations with experimental data on a turbine rotor for which there are extensive experimental heat transfer data available in the open literature. An unsteady compressible inviscid two-dimensional computer program is used to predict the propagation of the upstream stator disturbances into the downstream rotor passages. The viscous wake (velocity defect) and potential flow (pressure fluctuation) perturbations from the upstream stator are modeled at the computational rotor–inlet boundary. The effects of these interactions on the unsteady rotor flow result in computed instantaneous velocity and pressure fields. The period of the rotor unsteadiness is one stator pitch. The instantaneous velocity fields on the rotor surfaces are input in a steady-flow differential boundary-layer program, which is used to compute the instantaneous heat transfer rate on the rotor blades. The results of these quasi-steady heat-transfer computations are compared with the results of unsteady heat transfer experiments and with the results of previous unsteady heat transfer computations. The unsteady flow fields explain the unsteady amplitudes and phases of the increases and decreases in instantaneous heat transfer rate. It is concluded that the present method is accurate for quantitative predictions of unsteady heat transfer in subsonic turbine flows.

1.
Erdos, J. I., and Lzner, E., 1977, “Computation of Unsteady Transonic Flows Through Rotating and Stationary Cascades,” NASA-CR-2900.
2.
Koya
,
M.
, and
Kotake
,
S.
,
1985
, “
Numerical Analysis of Fully Three-Dimensional Periodic Flows Through a Turbine Stage
,”
ASME J. Fluids Eng.
,
107
, pp.
945
952
.
3.
Fourmaux, A., 1986, “Unsteady Flow Calculation in Cascades,” ASME Paper No. 86-GT-178.
4.
Lewis
,
J. P.
,
Delaney
,
R. A.
, and
Hall
,
E. J.
,
1989
, “
Numerical Prediction of Turbine Vane-Blade Aerodynamic Interaction
,”
ASME J. Turbomach.
,
111
, pp.
387
393
.
5.
Rai
,
M. M.
, and
Madavan
,
N. K.
,
1990
, “
Multi-Airfoil Navier–Stokes Simulations of Turbine Rotor–Stator Interaction
,”
ASME J. Turbomach.
,
112
, pp.
377
384
.
6.
Giles
,
M. B.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interactions
,”
J. Propul. Power
,
4
, No.
4
, pp.
356
362
.
7.
Giles
,
M. B.
, and
Haimes
,
R.
,
1993
, “
Validation of a Numerical Method for Unsteady Flow Calculations
,”
ASME J. Turbomach.
,
115
, pp.
110
117
.
8.
Richardson, S., 1990, “Analysis of Unsteady Rotor–Stator Interaction Using a Viscous Explicit Method,” AIAA Paper No. 90-0342.
9.
Hodson
,
H. P.
,
1985
, “
An Inviscid Blade-to-Blade Prediction of a Wake-Generated Unsteady Flow
,”
ASME J. Eng. Gas Turbines Power
107
, pp.
337
344
.
10.
Scott
,
J. N.
, and
Hankey
,
W. L.
,
1986
, “
Navier–Stokes Solutions of Unsteady Flow in a Compressor Rotor
,”
ASME J. Turbomach.
,
108
, pp.
206
215
.
11.
Korakianitis, T., 1987, “A Design Method for the Prediction of Unsteady Forces on Subsonic, Axial Gas-Turbine Blades,” Doctoral Dissertation Sc.D. in Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
12.
Korakianitis
,
T.
,
1992
, “
On the Prediction of Unsteady Forces on Gas Turbine Blades: Part 1—Description of the Approach
,”
ASME J. Turbomach.
,
114
, pp.
114
122
.
13.
Korakianitis
,
T.
,
1992
, “
On the Prediction of Unsteady Forces on Gas Turbine Blades: Part 2—Analysis of the Results
,”
ASME J. Turbomach.
,
114
, pp.
123
131
.
14.
Korakianitis
,
T.
,
1993
, “
On the Propagation of Viscous Wakes and Potential-Flow in Axial-Turbine Cascades
,”
ASME J. Turbomach.
,
115
, pp.
118
127
.
15.
Korakianitis
,
T.
,
1993
, “
The Influence of Stator-Rotor Gap on Axial-Turbine Unsteady Forcing Functions
,”
AIAA J.
,
31
, No.
7
, pp.
1256
1264
, July.
16.
Hwang
,
C. J.
, and
Liu
,
J. L.
,
1993
, “
Analysis of Steady and Unsteady Turbine Cascade Flows by a Locally Implicit Hybrid Algorithm
,”
ASME J. Turbomach.
,
115
, pp.
699
706
.
17.
Manwaring
,
S. R.
, and
Wisler
,
D. C.
,
1993
, “
Unsteady Aerodynamics and Gust Response in Compressors and Turbines
,”
ASME J. Turbomach.
,
115
, pp.
724
740
.
18.
Gallus
,
H. E.
,
Grollius
,
H.
, and
Lambertz
,
J.
,
1982
, “
The Influence of Blade Number Ratio and Blade Row Spacing on Axial-Flow Compressor Stator Blade Dynamic Load and Stage Sound Pressure Level
,”
ASME J. Fluids Eng.
,
104
, pp.
633
641
.
19.
Dring
,
R. P.
,
Joslyn
,
H. D.
,
Hardin
,
L. W.
, and
Wagner
,
J. H.
,
1982
, “
Turbine Rotor-Stator Interaction
,”
ASME J. Eng. Power
,
104
, pp.
729
742
.
20.
Binder
,
A.
,
Forster
,
W.
,
Mach
,
K.
, and
Rogge
,
H.
,
1987
, “
Unsteady Flow Interaction Caused by Stator Secondary Vortices in a Turbine Rotor
,”
ASME J. Turbomach.
,
109
, pp.
251
257
.
21.
Dunn
,
M. G.
,
1990
, “
Phase and Time-Resolved Measurements of Unsteady Heat-Transfer and Pressure in a Full-Stage Rotating Turbine
,”
ASME J. Turbomach.
,
112
, pp.
531
538
.
22.
Dunn
,
M. G.
,
Kim
,
J.
,
Civinskas
,
K. C.
, and
Boyle
,
R. J.
,
1994
, “
Time-Averaged Heart Transfer and Pressure Measurements and Comparison With Prediction for a Two-Stage Turbine
,”
ASME J. Turbomach.
,
116
, pp.
14
22
.
23.
Ashworth
,
D. A.
,
Lagraff
,
J. E.
,
Schultz
,
D. L.
, and
Grindrod
,
K. J.
,
1985
, “
Unsteady Aerodynamic and Heat Transfer Processes in a Transonic Turbine Stage
,”
ASME J. Eng. Power
,
107
, pp.
1022
1031
.
24.
Blair
,
M. F.
,
1994
, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
,
116
, pp.
1
13
.
25.
Liu, X., and Rodi, W., 1992, “Measurement of Unsteady Flow and Heat Transfer in a Linear Turbine Cascade,” ASME Paper No. 92-GT-323.
26.
Magari
,
P. J.
, and
Legraff
,
L. E.
,
1994
, “
Wake-Induced Unsteady Stagnation-Region Heat Transfer Measurements
,”
ASME J. Turbomach.
,
116
, pp.
29
38
.
27.
Krouthen, B., and Giles, M. B., 1988, “Numerical Investigation of Hot Streaks in Turbines,” AIAA Paper No. 88-3015.
28.
Griffin, L. W., and McConnaughey, H. V., 1989, “Prediction of the Aerodynamic Environment and Heat Transfer for Rotor-Stator Configurations,” ASME Paper No. 89-GT-89.
29.
Tran
,
L. T.
, and
Taulbee
,
D. B.
,
1992
, “
Prediction of Unsteady Rotor-Surface Pressure and Heat Transfer From Wake Passings
,”
ASME J. Turbomach.
,
114
, pp.
807
817
.
30.
Korakianitis
,
T.
,
1993
, “
Discussion of ‘Prediction of Unsteady Rotor-Surface and Heat Transfer From Wake Passings,’
ASME J. Turbomach.
,
115
, pp.
362
364
.
31.
Abhari
,
R. S.
,
Guenette
,
G. R.
,
Epstein
,
A. H.
, and
Giles
,
M. B.
,
1992
, “
Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and Numerical Calculations
,”
ASME J. Turbomach.
,
114
, pp.
818
827
.
32.
Majjigi, R. K., and Gliebe, P. R., 1984, “Development of a Rotor Wake/Vortex Model. Vol. I—Final Report,” NASA-CR-174849.
33.
Albers, J. A., and Gregg, J. L., 1974, “Computer Program for Calculating Laminar, Transitional, and Turbulent Boundary Layers for a Compressible Axisymmetric Flow,” NASA TN D-7521, Apr.
34.
Liepmann, H. W., and Roshko, A., 1957, Elements of Gasdynamics, Wiley, New York, NY.
You do not currently have access to this content.