Interactions between shock waves and film cooling are described as they affect magnitudes of local and spanwise-averaged adiabatic film cooling effectiveness distributions. A row of three cylindrical holes is employed. Spanwise spacing of holes is 4 diameters, and inclination angle is 30 deg. Free-stream Mach numbers of 0.8 and 1.10–1.12 are used, with coolant to free-stream density ratios of 1.5–1.6. Shadowgraph images show different shock structures as the blowing ratio is changed, and as the condition employed for injection of film into the cooling holes is altered. Investigated are film plenum conditions, as well as perpendicular film injection crossflow Mach numbers of 0.15, 0.3, and 0.6. Dramatic changes to local and spanwise-averaged adiabatic film effectiveness distributions are then observed as different shock wave structures develop in the immediate vicinity of the film-cooling holes. Variations are especially evident as the data obtained with a supersonic Mach number are compared to the data obtained with a free-stream Mach number of 0.8. Local and spanwise-averaged effectiveness magnitudes are generally higher when shock waves are present when a film plenum condition (with zero crossflow Mach number) is utilized. Effectiveness values measured with a supersonic approaching free-stream and shock waves then decrease as the injection crossflow Mach number increases. Such changes are due to altered flow separation regions in film holes, different injection velocity distributions at hole exits, and alterations of static pressures at film hole exits produced by different types of shock wave events.

1.
Norton, R. J. G., Forest, A. E., White, A. J., Henshaw, D. G., Epstein, A. H., Schultz, D. L., and Oldfield, M. L. G., 1990, “Turbine Cooling System Design, Vol. 1—Technical Report,” Report WRDC-TR-89-2109, Aero Propulsion and Power Laboratory, Wright Research Development Center, Air Force System Command, Wright-Patterson Air Force Base, OH.
2.
Rigby, M. J., Johnson, A. B., and Oldfield, M. L. G., 1990, “Gas Turbine Rotor Blade Film Cooling With and Without Simulated NGV Shock Waves and Wakes,” ASME Paper No. 90-GT-78.
3.
Abhari
,
R. S.
, and
Epstein
,
A. H.
,
1994
, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
,
116
, pp.
63
70
.
4.
Abhari
,
R. S.
,
1996
, “
Impact of Rotor–Stator Interaction on Turbine Film Cooling
,”
ASME J. Turbomach.
,
118
, pp.
123
133
.
5.
Nix, A. C., Reid, T., Peabody, H., Ng, W. F., Diller, T. E., and Schetz, J. A., 1997, “Effects of Shock Wave Passing on Turbine Blade Heat Transfer in a Transonic Cascade,” AIAA Paper No. 07-0160.
6.
Popp, O., Smith, D. E., Bubb, J. V., Grabowski, H., III, Diller, T. E., Schetz, J. A., and Ng, W. F., 1999, “Steady and Unsteady Heat Transfer in a Transonic Film Cooled Turbine Cascade,” ASME Paper No. 99-GT-259.
7.
Popp, O., Smith, D. E., Bubb, J. V., Grabowski, H., III, Diller, T. E., Schetz, J. A., and Ng, W. F., 2000, “Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part II: Unsteady Heat Transfer,” ASME Paper No. 2000-GT-203.
8.
Smith, D. E., Bubb, J. V., Popp, O., Grabowski, H., III, Diller, T. E., Schetz, J. A., and Ng, W. F., 2000, “An Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I: Steady Heat Transfer,” ASME Paper No. 2000-GT-202.
9.
Abhari
,
R. S.
,
Guenette
,
G. R.
,
Epstein
,
A. H.
, and
Giles
,
M. B.
,
1992
, “
Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and Numerical Calculations
,”
ASME J. Turbomach.
,
114
, pp.
818
827
.
10.
Ligrani
,
P. M.
,
Gong
,
R.
,
Cuthrell
,
J. M.
, and
Lee
,
J. S.
,
1996
, “
Bulk Flow Pulsations and Film Cooling: Part I, Injectant Behavior
,”
Int. J. Heat Mass Transf.
,
39
, No.
11
, pp.
2271
2282
.
11.
Ligrani
,
P. M.
,
Gong
,
R.
, and
Cuthrell
,
J. M.
,
1997
, “
Bulk Flow Pulsations and Film Cooling: Flow Structure Just Downstream of the Holes
,”
ASME J. Turbomach.
,
119
, pp.
568
573
.
12.
Ligrani
,
P. M.
,
Gong
,
R.
,
Cuthrell
,
J. M.
, and
Lee
,
J. S.
,
1997
, “
Effects of Bulk Flow Pulsations on Film-Cooled Boundary Layer Structure
,”
ASME J. Fluids Eng.
,
119
, pp.
56
66
.
13.
Wittig, S., Schulz, A., Gritsch, M., and Thole, K. A., 1996, “Transonic Film Cooling Investigations: Effects of Hole Shapes and Orientations,” ASME Paper No. 96-GT-222.
14.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes with Expanded Exits
,”
ASME J. Turbomach.
,
120
, pp.
549
556
.
15.
Liess
,
C.
,
1975
, “
Experimental Investigation of Film Cooling With Injection from a Row of Holes for the Application to Gas Turbine Blades
,”
ASME J. Eng. Power
,
97
, pp.
21
27
.
16.
Seo
,
H. J.
,
Lee
,
J. S.
, and
Ligrani
,
P. M.
,
1998
, “
The Effect of Injection Hole Length on Film Cooling With Bulk Flow Pulsations
,”
Int. J. Heat Mass Transf.
,
41
, No.
22
, pp.
3515
3528
.
17.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Tsou
,
F. K.
, and
Haji-Sheikh
,
A.
,
1966
, “
Film Cooling With Air and Helium Injection Through a Rearward-Facing Slot into a Supersonic Air Flow
,”
AIAA J.
,
4
, No.
6
, pp.
981
985
.
18.
Parthasarathy
,
K.
, and
Zakkay
,
V.
,
1970
, “
An Experimental Investigation of Turbulent Slot Injection at Mach 6
,”
AIAA J.
,
8
, No.
7
, pp.
1302
1307
.
19.
Cary
,
A. M.
, and
Hefner
,
J. N.
,
1970
, “
Film Cooling Effectiveness in Hypersonic Turbulent Flow
,”
AIAA J.
,
8
, No.
11
, pp.
2090
2091
.
20.
Alzner
,
E.
, and
Zakkay
,
V.
,
1971
, “
Turbulent Boundary-Layer Shock Interaction With and Without Injection
,”
AIAA J.
,
9
, No.
9
, pp.
1769
1776
.
21.
Baryshev
,
Y. V.
,
Leont’yev
,
A. I.
, and
Rozdestvenskiy
,
V. I.
,
1975
, “
Heat Transfer in the Zone of Interaction Between a Shock Wave and the Boundary Layer
,”
Heat Transfer—Soviet Research
,
7
, No.
6
, pp.
19
24
.
22.
Cary
,
A. M.
,
Bushnell
,
D. M.
, and
Hefner
,
J. N.
,
1979
, “
Predicted Effects of Tangential Slot Injection on Turbulent Boundary Layer Flow Over a Wide Speed Range
,”
ASME J. Heat Transfer
,
101
, pp.
699
704
.
23.
Straight, D. M., 1979, “Effect of Shocks on Film Cooling in a Full Scale Turbojet Exhaust Nozzle Having an External Expansion Surface,” AIAA Paper No. 79-1170.
24.
Inger
,
G. R.
,
1985
, “
Transonic Shock Interaction With a Tangential Injected Turbulent Boundary Layer
,”
J. Aircr.
,
22
, No.
6
, pp.
498
502
.
25.
Holden, M. S., Nowak, R. J., Olsen, G. C., and Rodrigues, K. M., 1990, “Experimental Studies of Shock Wave/Wall Jet Interaction in Hypersonic Flow,” AIAA Paper No. 90-0607.
26.
Kamath, P. S., Holden, M. S., and McClinton, C. R., 1990, “Experimental and Computational Study of the Effect of Shocks on Film Cooling Effectiveness in Scramjet Combustors,” AIAA Paper No. 90-1713.
27.
Olsen, G. C., Nowak, R. J., Holden, M. S., and Bakner, N. R., 1990, “Experimental Results for Film Cooling in 2-D Supersonic Flow Including Coolant Delivery Pressure, Geometry, and Incident Shock Effects,” AIAA Paper No. 90-0605.
28.
Juhany
,
K. A.
, and
Hunt
,
M. L.
,
1992
, “
Flow-Field Measurements in Supersonic Film Cooling Including the Effect of Shock Wave Interaction
,”
AIAA J.
,
32
, No.
3
, pp.
578
585
.
29.
Schulz
,
A.
,
2000
, “
Infrared Thermography as Applied to Film Cooling of Gas Turbine Components
,”
Meas. Sci. Technol.
,
11
, No.
7
, pp.
948
956
.
30.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
,
758
765
.
31.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
32.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, No.
1
, pp.
3
17
.
33.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
2000
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
122
, pp.
146
152
.
34.
Schmidt
,
D.
,
Sen
,
B.
, and
Bogard
,
D.
,
1996
, “
Film Cooling with Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
, pp.
807
813
.
35.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
, pp.
224
232
.
36.
L’Ecuyer, M. R., and Soechting, F. O., 1985, “A Model for Correlating Flat Plate Film Cooling Effectiveness for Rows of Round Holes,” Paper 19, AGARD-CP-390, Heat Transfer and Cooling in Gas Turbines.
37.
Anderson, J. D., 1990, Modern Compressible Flow, McGraw-Hill, New York.
You do not currently have access to this content.