Measurements of discharge coefficients for five configurations of cylindrical film cooling hole geometries are presented. These comprise holes of varying angles of inclination (α=30, 45, and 90 deg) and orientation (γ=0, 45, and 90 deg), which are tested over a wide range of engine-like conditions in terms of internal and external crossflow Mach numbers (Mam=01.2,Mac=00.6) as well as pressure ratios ptc/pm=12.25. Results show that discharge coefficients do not depend solely on hole geometry, but are also profoundly affected by the internal and external crossflow conditions. The effect of increasing the orientation angle on the discharge behavior is very similar to the effect of increasing the inclination angle. Both result in higher losses, particularly at the cooling hole inlet while the losses at the hole exit are only slightly affected.

1.
Hay
,
N.
, and
Lampard
,
D.
,
1998
, “
Discharge Coefficient of Turbine Cooling Holes: A Review
,”
ASME J. Turbomach.
,
120
, pp.
314
319
.
2.
Burd
,
S. W.
, and
Simon
,
T. W.
,
1999
, “
Measurements of Discharge Coefficients in Film Cooling
,”
ASME J. Turbomach.
,
121
, pp.
243
248
.
3.
Hay
,
N.
,
Lampard
,
D.
, and
Benmansour
,
S.
,
1983
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes
,”
ASME J. Eng. Power
,
105
, pp.
243
248
.
4.
Hay
,
N.
,
Henshall
,
S. E.
, and
Manning
,
A.
,
1994
, “
Discharge Coefficients of Holes Angled to the Flow Direction
,”
ASME J. Turbomach.
,
116
, pp.
92
96
.
5.
Hay, N., Lampard, D., and Khaldi, A., 1994, “The Coefficient of Discharge of 30° Inclined Film Cooling Holes With Rounded Entries or Exits,” ASME Paper No. 94-GT-180.
6.
Hay
,
N.
, and
Spencer
,
A.
,
1992
, “
Discharge Coefficients of Cooling Holes With Radiused and Chamfered Inlets
,”
ASME J. Turbomach.
,
114
, pp.
701
706
.
7.
Hay, N., and Lampard, D., 1995, “The Discharge Coefficient of Flared Film Cooling Holes,” ASME Paper No. 95-GT-15.
8.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
, pp.
557
563
.
9.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
2000
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
122
, pp.
146
153
.
10.
Wittig, S., Schulz, A., Gritsch, M., and Thole, K. A., 1996, “Transonic Film-Cooling Investigations: Effects of Hole Shapes and Orientations,” ASME Paper No. 96-GT-222.
11.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, Jan., pp.
3
8
.
12.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Effect of a Crossflow at the Entrance to a Film-Cooling Hole
,”
ASME J. Fluids Eng.
,
119
, pp.
533
541
.
13.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Method of Correlating Discharge Coefficients of Film-Cooling Holes
,”
AIAA J.
,
36
, pp.
976
980
.
14.
Rowbury, D. A., Oldfield, M. L. G., and Lock, G. D., 1997, “Engine Representative Discharge Coefficients Measured in an Annular Nozzle Guide Vane Cascade,” ASME Paper No. 97-GT-99.
15.
Rowbury
,
D. A.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
2001
, “
A Method for Correlating the Influence of External Crossflow on the Discharge Coefficients of Film Cooling Holes
,”
ASME J. Turbomach.
,
123
, pp.
258
265
.
You do not currently have access to this content.