A combined experimental and computational study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first-stage blade tip surface for a geometry typical of large power generation turbines (>100 MW). This paper is concerned with the design and execution of the experimental portion of the study, which represents the first reported investigation to obtain nearly full surface information on heat transfer coefficients within an environment that develops an appropriate pressure distribution about an airfoil blade tip and shroud model. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high-pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57×106, and total turning of about 110 deg. A hue detection based liquid crystal method is used to obtain the detailed heat transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5 or 9 percent. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp edge and rounded edge tip geometries at each of the inlet turbulence intensity levels. [S0889-504X(00)01902-4]

1.
Lakshminarayana
,
B.
,
1970
, “
Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachinery
,”
ASME J. Basic Eng.
,
92
, pp.
467
482
.
2.
Booth
,
T. C.
,
Dodge
,
P. R.
, and
Hepworth
,
H. K.
,
1982
, “
Rotor-Tip Leakage: Part I-Basic Methodology
,”
ASME J. Eng. Power
,
104
, pp.
154
161
.
3.
Wadia
,
A. R.
, and
Booth
,
T. C.
,
1982
, “
Rotor-Tip Leakage: Part II—Design Optimization Through Viscous Analysis and Experiment
,”
ASME J. Eng. Power
,
104
, pp.
162
169
.
4.
Moore
,
J.
,
Moore
,
J. G.
,
Henry
,
G. S.
, and
Chaudhry
,
U.
,
1989
, “
Flow and Heat Transfer in Turbine Tip Gaps
,”
ASME J. Turbomach.
,
111
, pp.
301
309
.
5.
Sjolander
,
S. A.
, and
Cao
,
D.
,
1995
, “
Measurements of the Flow in an Idealized Turbine Tip Gap
,”
ASME J. Turbomach.
,
117
, pp.
578
584
.
6.
Kaiser, I., and Bindon, J. P., 1997, “The Effect of Tip Clearance on the Development of Loss Behind a Rotor and a Subsequent Nozzle,” ASME Paper No. 97-GT-53.
7.
Seban
,
R. A.
,
1965
, “
Heat Transfer and Flow in a Shallow Rectangular Cavity With Subsonic Turbulent Air Flow
,”
Int. J. Heat Mass Transf.
,
8
, pp.
1353
1368
.
8.
Mayle, R. E., and Metzger, D. E., 1982, “Heat Transfer at the Tip of an Unshrouded Turbine Blade,” Proc. Seventh Int. Heat Transfer Conf., Hemisphere Pub., pp. 87–92.
9.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
,
1989
, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel
,”
ASME J. Lubr. Technol.
,
111
, pp.
73
79
.
10.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
,
1989
, “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Heat Transfer
,
111
, pp.
131
138
.
11.
Yang, T. T., and Diller, T. E., 1995, “Heat Transfer and Flow for a Grooved Turbine Blade Tip in a Transonic Cascade,” ASME Paper No. 95-WA/HT-29.
12.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
113
, pp.
502
507
.
13.
Metzger
,
D. E.
, and
Rued
,
K.
,
1989
, “
The Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips: Part I—Sink Flow Effects on Blade Pressure Side
,”
ASME J. Turbomach.
,
111
, pp.
284
292
.
14.
Rued
,
K.
, and
Metzger
,
D. E.
,
1989
, “
The Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips: Part II—Source Flow Effects on Blade Suction Sides
,”
ASME J. Turbomach.
,
111
, pp.
293
300
.
15.
Kim
,
Y. W.
,
Abdel-Messeh
,
W.
,
Downs
,
I. F.
,
Soechting
,
F. O.
,
Steuber
,
G. D.
, and
Tanrikut
,
S.
,
1995
, “
A Summary of the Cooled Turbine Blade Tip Heat Transfer and Film Effectiveness Investigations Performed by Dr. D. E. Metzger
,”
ASME J. Turbomach.
,
117
, pp.
1
11
.
16.
Chyu
,
M. K.
,
Metzger
,
D. E.
, and
Hwan
,
C. L.
,
1987
, “
Heat Transfer in Shrouded Rectangular Cavities
,”
J. Thermophys.
,
1
, No.
3
, pp.
247
252
.
17.
Ameri, A. A., and Steinthorsson, E., 1995, “Prediction of Unshrouded Rotor Blade Tip Heat Transfer,” ASME Paper No. 95-GT-142.
18.
Ameri, A. A., and Steinthorsson, E., 1996, “Analysis of Gas Turbine Rotor Blade Tip and Shroud Heat Transfer,” ASME Paper No. 96-GT-189.
19.
Ameri
,
A.
,
Rigby
,
D. L.
, and
Steinthorsson
,
E.
,
1998
, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,”
ASME J. Turbomach.
,
120
, pp.
753
759
.
20.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1999
, “
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
,”
ASME J. Turbomach.
,
121
, pp.
683
693
.
21.
Ameri
,
A. A.
, and
Bunker
,
R. S.
,
2000
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 2—Simulation Results
,”
ASME J. Turbomach.
,
122
, pp.
272
277
.
22.
Hollingsworth, D. K., Boehman, A. L., Smith, E. G., and Moffat, R. J., 1989, “Measurement of Temperature and Heat Transfer Coefficient Distributions in a Complex Flow Using Liquid Crystal Thermography and True-Color Image Processing,” Collected Papers in Heat Transfer, ASME pp. 35–42.
23.
Farina, D. J., and Moffat, R. J., 1994, “A System for Making Temperature Measurements Using Thermochromic Liquid Crystals,” Report No. HMT-48, Thermosciences Division, Stanford University.
24.
Farina
,
D. J.
,
Hacker
,
J. M.
,
Moffat
,
R. J.
, and
Eaton
,
J. K.
,
1994
, “
Illuminant Invariant Calibration of Thermochromic Liquid Crystals
,”
Exp. Therm. Fluid Sci.
,
9
, pp.
1
9
.
25.
Kline, S. J., and McClintock, F. A., 1953, “Describing Uncertainties in Single Sample Experiments,” Mechanical Engineering, Vol. 75, Jan., pp. 3–8.
26.
Boelter, L. M. K., Young, G., and Iversen, H. W., 1948, “An Investigation of Aircraft Heaters XXVII—Distribution of Heat Transfer Rate in the Entrance Region of a Tube,” NACA TN 1451.
27.
Kays, W. M., and Crawford, M. E., 1980, Convective Heat and Mass Transfer, 2nd ed., McGraw-Hill, p. 269.
You do not currently have access to this content.