A computational method is presented for predicting the unsteady aerodynamic response of a vibrating blade row that is part of a multistage turbomachine. Most current unsteady aerodynamic theories model a single blade row isolated in an infinitely long duct. This assumption neglects the potentially important influence of neighboring blade rows. The present “coupled mode” analysis is an elegant and computationally efficient method for modeling neighboring blade row effects. Using this approach, the coupling between blade rows is modeled using a subset of the so-called spinning modes, i.e., pressure, vorticity, and entropy waves, which propagate between the blade rows. The blade rows themselves are represented by reflection and transmission coefficients. These coefficients describe how spinning modes interact with, and are scattered by, a given blade row. The coefficients can be calculated using any standard isolated blade row model; here we use a linearized full potential flow model together with rapid distortion theory to account for incident vortical gusts. The isolated blade row reflection and transmission coefficients, interrow coupling relationships, and appropriate boundary conditions are all assembled into a small sparse linear system of equations that describes the unsteady multistage flow. A number of numerical examples are presented to validate the method and to demonstrate the profound influence of neighboring blade rows on the aerodynamic damping of a cascade of vibrating airfoils.

1.
Adamczyk
J. J.
, and
Goldstein
M. E.
,
1978
, “
Unsteady Flow in a Supersonic Cascade With Subsonic Leading Edge Locus
,”
AIAA Journal
, Vol.
16
, No.
12
, pp.
1248
1254
.
2.
Atassi
H. M.
, and
Grzedzinski
J.
,
1989
, “
Unsteady Disturbances of Streaming Motions Around Bodies
,”
Journal of Fluid Mechanics
, Vol.
209
, Dec., pp.
385
403
.
3.
Bateman
H.
,
1930
, “
Irrotational Motion of a Compressible Fluid
,”
Proc. National Academy of Sciences
, Vol.
16
, pp.
816
825
.
4.
Bo¨lcs, A., and Fransson, T. H., 1986, “Aeroelasticity in Turbomachines. Comparison of Theoretical and Experimental Cascade Results,” AFOSR-TR-0605, Air Force Office of Scientific Research, Washington, DC.
5.
Buffum, D. H., 1993, “Blade Row Interaction Effects on Flutter and Forced Response,” AIAA Paper No. 93-2084.
6.
Clark, W. S., and Hall, K. C., 1995, “A Numerical Model of the Onset of Stall Flutter in Cascades,” ASME Paper No. 95-GT-377.
7.
Gerolymos
G. A.
,
1993
, “
Advances in the Numerical Integration of the Three-Dimensional Euler Equations in Vibrating Cascades
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
115
, pp.
781
790
.
8.
Giles
M. B.
,
1988
a, “
Calculation of Unsteady Wake/Rotor Interaction
,”
AIAA Journal of Propulsion
, Vol.
4
, No.
4
, pp.
356
362
.
9.
Giles, M. B., 1988b, “Stator/Rotor Interaction in a Transonic Turbine,” AIAA Paper No. 88-3093.
10.
Goldstein
M. E.
,
1978
, “
Unsteady Vortical and Entropic Distortions of Potential Flows Round Arbitrary Obstacles
,”
Journal of Fluid Mechanics
, Vol.
93
, Part 3, pp.
433
468
.
11.
Hall
K. C.
,
1993
, “
Deforming Grid Variational Principle for Unsteady Small Disturbance Flows in Cascades
,”
AIAA Journal
, Vol.
31
, No.
5
, pp.
891
900
.
12.
Hall
K. C.
, and
Clark
W. S.
,
1993
, “
Linearized Euler Prediction of Unsteady Aerodynamic Loads in Cascades
,”
AIAA Journal
, Vol.
31
, No.
3
, pp.
540
550
.
13.
Hall
K. C.
, and
Crawley
E. F.
,
1989
, “
Calculation of Unsteady Flows in Turbomachinery Using the Linearized Euler Equations
,”
AIAA Journal
, Vol.
27
, No.
6
, pp.
777
787
.
14.
Hall
K. C.
, and
Lorence
C. B.
,
1993
, “
Calculation of Three-Dimensional Unsteady Flows in Turbomachinery Using the Linearized Harmonic Euler Equations
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
115
, No.
4
, pp.
800
809
.
15.
Hall
K. C.
, and
Silkowski
P. D.
,
1997
, “
The Influence of Neighboring Blade Rows on the Unsteady Aerodynamic Response of Cascades
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
119
, pp.
85
93
.
16.
Hall
K. C.
, and
Verdon
J. M.
,
1991
, “
Gust Response Analysis for Cascades Operating in Nonuniform Mean Flows
,”
AIAA Journal
, Vol.
29
, No.
9
, pp.
1463
1471
.
17.
Hanson, D. B., 1992, “Unsteady Coupled Cascade Theory Applied to the Rotor/Stator Interaction Noise Problem,” DGLR/AIAA Paper No. 92-02-084.
18.
Hanson, D. B., 1993, “Mode Trapping in Coupled 2D Cascades—Acoustic and Aerodynamic Results,” AIAA Paper No. 93-4417.
19.
He
L.
,
1990
, “
An Euler Solution for Unsteady Flows Around Oscillating Blades
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
112
, pp.
714
722
.
20.
Holmes, D. G., and Chuang, H. A., 1993, “2D Linearized Harmonic Euler Flow Analysis for Flutter and Forced Response,” Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers, H. M. Atassi, ed., Springer-Verlag, New York [Originally presented 1991].
21.
Huff, D. L., Swafford, T. W., and Reddy, T. S. R., 1991, “Euler Flow Predictions for an Oscillating Cascade Using a High Resolution Wave-Split Scheme,” ASME Paper No. 91-GT-198.
22.
Kaji
S.
, and
Okazaki
T.
,
1970
, “
Generation of Sound by Rotor-Stator Interaction
,”
Journal of Sound and Vibration
, Vol.
13
, No.
3
, pp.
281
307
.
23.
Lighthill
M. J.
,
1956
, “
Drift
,”
Journal of Fluid Mechanics
, Vol.
1
, May, pp.
31
53
.
24.
Lorence
C. B.
, and
Hall
K. C.
,
1996
, “
Sensitivity Analysis of the Aeroacoustic Response of Turbomachinery Blade Rows
,”
AIAA Journal
, Vol.
34
, No.
8
, pp.
1545
1554
.
25.
Marshall
J. G.
, and
Imregun
M.
,
1996
, “
A Review of Aeroelasticity Methods With Emphasis on Turbomachinery Applications
,”
Journal Fluids and Structures
, Vol.
10
, No.
3
, pp.
237
267
.
26.
Nagashima, T., and Whitehead, D. S., 1977, “Linearized Supersonic Unsteady Flow in Cascades,” Reports and Memoranda No. 3711, Aeronautical Research Council, London.
27.
Rai
M. M.
,
1989
a, “
Three-Dimensional Navier–Stokes Simulations of Turbine Rotor-Stator Interaction, Part I—Methodology
,”
Journal of Propulsion and Power
, Vol.
5
, No.
3
, pp.
305
311
.
28.
Rai
M. M.
,
1989
b, “
Three-Dimensional Navier–Stokes Simulations of Turbine Rotor-Stator Interaction, Part II—Results
,”
Journal of Propulsion and Power
, Vol.
5
, No.
3
, pp.
312
319
.
29.
Silkowski, P. D., 1996, “A Coupled Mode Method for Multistage Aeroelastic and Aeroacoustic Analysis of Turbomachinery,” Ph.D. Thesis, Duke University, Durham, NC.
30.
Smith, S. N., 1972, “Discrete Frequency Sound Generation in Axial Flow Turbomachines,” Reports and Memoranda No. 3709, Aeronautical Research Council, London.
31.
Thompson
J. F.
,
Thames
F. C.
, and
Mastin
C. W.
,
1977
, “
A Code for Numerical Generation of Boundary-Fitted Curvilinear Coordinate Systems on Fields Containing Any Number of Arbitrary Two-Dimensional Bodies
,”
Journal of Computational Physics
, Vol.
24
, No.
3
, pp.
274
302
.
32.
Verdon, J. M., 1987, “Linearized Unsteady Aerodynamic Theory,” in: AGARD Manual on Aeroelasticity in Axial Flow Turbomachines, Vol. 1, Unsteady Turbomachinery Aerodynamics (AGARD-AG-298), M. F. Platzer and F. O. Carta, eds., Neuilly sur Seine, France, Ch. 2.
33.
Verdon
J. M.
,
1993
, “
Review of Unsteady Aerodynamic Methods for Turbomachinery Aeroelastic and Aeroacoustic Applications
,”
AIAA Journal
, Vol.
31
, No.
2
, pp.
235
250
.
34.
Verdon
J. M.
, and
Caspar
J. R.
,
1982
, “
Development of a Linear Unsteady Aerodynamic Analysis for Finite-Deflection Subsonic Cascades
,”
AIAA Journal
, Vol.
20
, No.
9
, pp.
1259
1267
.
35.
Verdon
J. M.
, and
McCune
J. E.
,
1975
, “
Unsteady Supersonic Cascade in Subsonic Axial Flow
,”
AIAA Journal
, Vol.
13
, No.
2
, pp.
193
201
.
36.
Whitehead, D. S., 1960, “Force and Moment Coefficients for Vibrating Aerofoils in Cascade,” Reports and Memoranda No. 3254, Aeronautical Research Council, London.
37.
Whitehead, D. S., 1970, “Vibration and Sound Generation in a Cascade of Flat Plates in Subsonic Flow,” Reports and Memoranda No. 3685, Aeronautical Research Council, London.
38.
Whitehead, D. S., 1987, “Classical Two-Dimensional Methods,” in: AGARD Manual on Aeroelasticity in Axial Flow Turbomachines, Vol. I, Unsteady Turbomachinery Aerodynamics (AGARD-AG-298), M. F. Platzer and F. O. Carta, eds., Neuilly sur Seine, France, Ch. 3.
39.
Whitehead
D. S.
,
1990
, “
A Finite Element Solution of Unsteady Two-Dimensional Flow in Cascades
,”
International Journal for Numerical Methods in Fluids
, Vol.
10
, No.
1
, pp.
13
34
.
This content is only available via PDF.
You do not currently have access to this content.