Turbine blade endwall heat transfer measurements are presented for a range of Reynolds and Mach numbers. Data were obtained for Reynolds numbers based on inlet conditions of 0.5 and 1.0 × 106, for isentropic exit Mach numbers of 1.0 and 1.3, and for free-stream turbulence intensities of 0.25 and 7.0 percent. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification. The flow field in the cascade is highly three dimensional as a result of thick boundary layers at the test section inlet. Endwall heat transfer data were obtained using a steady-state liquid crystal technique.

1.
Blair
M. F.
,
1983
, “
Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Mean Profile Development: Part II—Analysis of Results
,”
ASME Journal of Heat Transfer
, Vol.
105
, pp.
41
47
.
2.
Blair
M. F.
,
1994
, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
116
, pp.
1
13
.
3.
Chima
R. V.
, and
Yokota
J. W.
,
1990
, “
Numerical Analysis of Three-Dimensional Viscous Internal Flows
,”
AIAA Journal
, Vol.
28
, No.
5
, pp.
798
806
.
4.
Eckert, E. R. G., 1955, J. Aero. Sci., pp. 585–587.
5.
Giel, P. W., Thurman, D. R., Lopez, I., Boyle, R. J., VanFossen, G. J., Jett, T. J., Camperchioli, W. P., and La, H., 1996a, “Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade,” ASME Paper No. 96–GT–113.
6.
Giel
P. W.
,
Sirbaugh
J. R.
,
Lopez
I.
, and
VanFossen
G. J.
,
1996
b, “
Three-Dimensional Navier–Stokes Analysis and Redesign of an Imbedded Bellmouth Nozzle in a Turbine Cascade Inlet Section
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
118
, pp.
529
535
.
7.
Giel, P. W., Thurman, D. R., VanFossen, G. J., Hippensteele, S. A., and Boyle, R. J., 1996c, “Endwall Heat Transfer Measurements in a Transonic Turbine Cascade,” ASME Paper No. 96–GT–180; NASA TM-107387.
8.
Goldstein
R. J.
, and
Spores
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME Journal of Heat Transfer
, Vol.
110
, pp.
862
869
.
9.
Graziani
R. A.
,
Blair
M. F.
,
Taylor
R. J.
, and
Mayle
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME Journal of Engineering for Power
, Vol.
102
, pp.
1
11
.
10.
Gregory-Smith, D. G., and Graves, C. P., 1983, “Secondary Flows and Losses in a Turbine Cascade,” in: Viscous Effects in Turbomachines, AGARD-CP-351.
11.
Gregory-Smith
D. G.
,
Graves
C. P.
, and
Walsh
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
110
, pp.
1
8
.
12.
Gregory-Smith
D. G.
, and
Cleak
J. G. E.
,
1992
, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
114
, No.
1
, pp.
173
183
.
13.
Hippensteele, S. A., and Russell, L. M., 1988, “High-Resolution Liquid Crystal Heat-Transfer Measurements on the End Wall of a Turbine Passage With Variations in Reynolds Number,” presented at the 25th ASME Heat Transfer Conf., Houston, Texas, July 24–27; also NASA TM-100827.
14.
Kays, W. M., and Crawford, M. E., 1980, Convective Heat and Mass Transfer, 2nd ed., McGraw-Hill, New York.
15.
Kline
S. J.
, and
McClintock
F. A.
,
1953
, “
Describing Uncertainty in Single-Sample Experiments
,”
Mechanical Engineering
, Vol.
75
, Jan., pp.
3
8
.
16.
Langston
L. S.
,
Nice
M. L.
, and
Hooper
R. M.
,
1977
, “
Three Dimensional Flow Within a Turbine Cascade Passage
,”
ASME Journal of Engineering for Power
, Vol.
99
, pp.
21
28
.
17.
Marchal, P., and Sieverding, C. H., 1977, “Secondary Flows Within Turbomachinery Bladings,” in: Secondary Flows Within Turbomachines, AGARD-CP-214.
18.
Martinez-Botas
R. F.
,
Lock
G. D.
, and
Jones
T. V.
,
1995
, “
Heat Transfer Measurements in an Annular Cascade of Transonic Gas Turbine Blades Using the Transient Liquid Crystal Technique
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
117
, pp.
425
431
.
19.
Mee
D. J.
,
Baines
N. C.
,
Oldfield
M. L. G.
, and
Dickens
T. E.
,
1992
a, “
An Examination of the Contributions to Loss on a Transonic Turbine Blade in Cascade
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
114
, pp.
155
162
.
20.
Mee
D. J.
,
Baines
N. C.
, and
Oldfield
M. L. G.
,
1992
b, “
Detailed Boundary Layer Measurements on a Transonic Turbine Cascade
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
114
, No.
1
, pp.
163
172
.
21.
Moffat, R. J., 1990, “Experimental Heat Transfer,” Proc. of the Ninth Int’l Heat Transfer Conf., Jerusalem, Israel, Vol. 1, pp. 187–205.
22.
Roach
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
, Vol.
8
, pp.
82
92
.
23.
Van Fossen, G. J., Simoneau, R. J., and Ching, C. Y., 1994, “Influence of Turbulence Parameters, Reynolds Number, and Body Shape on Stagnation-Region Heat Transfer,” NASA TP-3487.
24.
Verhoff, V. G., Camperchioli, W. P., and Lopez, I., 1992, “Transonic Turbine Blade Cascade Testing Facility,” AIAA Paper No. 92-4034; NASA TM-105646.
25.
Yamamoto
A.
,
1987
a, “
Prediction and Development of Secondary Flows and Losses in Two Types of Straight Turbine Cascades: Part 1—A Stator Case
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
109
, pp.
186
193
.
26.
Yamamoto
A.
,
1987
b, “
Prediction and Development of Secondary Flows and Losses in Two Types of Straight Turbine Cascades: Part 2—A Rotor Case
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
109
, pp.
194
200
.
This content is only available via PDF.
You do not currently have access to this content.