A numerical method for calculating three-dimensional, steady or unsteady, incompressible, viscous flow is described. The conservation equations for mass and momentum and the equations of the k–ε turbulence model are solved with a finite volume method on nonorthogonal boundary-fitted grids. The method employs cell-centered variable arrangement and Cartesian velocity components. The SIMPLE algorithm is used to calculate the pressure and to enforce mass conservation. The computer code is vectorizable as far as possible to achieve an optimal performance on modern vector computers. Results of steady flow calculations in the guide vane, the pump rotor, and the turbine rotor and of the unsteady interaction simulation of the pump and the turbine of a one-stage one-phase non-automotive hydrodynamic torque converter are presented.

1.
Abe, K., Kondoh, T., Fukumura, K., and Kojima, M., 1991, “Three-Dimensional Simulation of the Flow in a Torque Converter,” SAE Paper No. 910800.
2.
Adrian, F.-W., 1985, “Stro¨mungsuntersuchungen und -analyse in Kreisla¨ufen hydrodynamischer Wandler,” Dissertation, Ruhr-Universita¨t Bochum, Germany.
3.
Browarzik, V., and Grahl, K. G., 1992, “Non-steady Flow Measurements Inside a Hydrodynamic Torque Converter by Hot-Film Anemometry,” ASME Paper No. 92-GT-161.
4.
Browarzik, V., 1994, “Experimental Investigation of Rotor/Rotor Interaction in a Hydrodynamic Torque Converter Using Hot-Film Anemometry,” ASME Paper No. 94-GT-246.
5.
By
R. R.
,
Kunz
R. F.
, and
Lakshminarayana
B.
,
1993
, “
Navier–Stokes Analysis of the Pump Flow Field of an Automotive Torque Converter
,”
Pumping Machinery
, ASME FED-Vol.
154
, pp.
265
274
.
6.
Coles, D., 1978, “A Model for Flow in the Viscous Sublayer,” Workshop on Coherent Structure of Turbulent Boundary Layers, Lehigh University, Bethlehem, PA.
7.
El Telbany
M. M. M.
, and
Reynolds
A. J.
,
1981
, “
Turbulence in Plane Channel Flows
,”
Journal of Fluid Mechanics
, Vol.
111
, pp.
183
318
.
8.
Fujitani, K., Himeno, R., and Takagi, M., 1988, “Computational Study on Flow Through a Torque Converter,” SAE Paper No. 881746.
9.
Greim, R., and Volgmann, W., 1992, “Instationa¨re Berechnung der Stro¨mung in hydrodynamischen Wandlern,” Report SFB 278, Ruhr-Universita¨t Bochum, Germany.
10.
Greim, R., Schulz, H., Thiele, M., and Grahl, K. G., 1992, “Berechnung der dreidimensionalen reibungsbehafteten Stro¨mung in Pumpenlaufra¨dern,” Preprint No. B 6-08, Pump Congress Karlsruhe, Germany.
11.
Hirt
C. W.
,
Amsden
A. A.
, and
Cook
J. C.
,
1974
, “
An Arbitrary Lagrangian–Eulerian Computing Method for All Flow Speeds
,”
Journal of Computational Physics
, Vol.
14
, pp.
227
253
.
12.
Hirt, C. W., Nichols, B. D., and Romero, N. L., 1975, “SOLA—A Numerical Solution for Transient Fluid Flows,” Los Alamos Scientific Laboratory, LA-5852.
13.
Kwak
D.
,
Chang
J. L. C.
,
Shanks
S. P.
, and
Chakravarthy
S.
,
1986
, “
A Three-Dimensional Incompressible Navier–Stokes Flow Solver Using Primitive Variables
,”
AIAA Journal
, Vol.
24
, No.
3
, pp.
390
396
.
14.
Laufer, J., 1954, “The Structure of Turbulence in Fully Developed Pipe Flow,” NACA Rep. 1174.
15.
Leister
H.-J.
, and
Peric´
M.
,
1994
, “
Vectorized Strongly Implicit Solving Procedure for Seven-Diagonal Coefficient Matrix
,”
International Journal for Numerical Methods in Heat and Fluid Flow
, Vol.
4
, pp.
159
172
.
16.
Majumdar
S.
,
Rodi
W.
, and
Zhu
J.
,
1992
, “
Three-Dimensional Finite-Volume Method for Incompressible Flows With Complex Boundaries
,”
Journal of Fluids Engineering
, Vol.
114
, pp.
496
503
.
17.
Nikuradse, J., 1932, “Gesetzma¨ßigkeit der turbulenten Stro¨mung in glatten Rohren,” Forsch. Arb. Ing.-Wes., Vol. 356.
18.
Patankar
S. V.
, and
Spalding
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
International Journal of Heat and Mass Transfer
, Vol.
15
, pp.
1778
1806
.
19.
Peric´, M., 1985, “A Finite Volume Method for the Prediction of Three-Dimensional Fluid Flow in Complex Ducts,” PhD Thesis, University of London.
20.
Peric´, M., 1991, “Randbedingungen und deren Implementierung in Finite-Volumen-Berechnungsverfahren,” presented at NUMET 1991, Erlangen, Germany.
21.
Reichardt
H.
,
1940
, “
Die Wa¨rmeu¨bertragung in turbulenten Reibungsschichten
,”
ZAMM
, Vol.
40
, pp.
297
328
.
22.
Rhie
C. M.
, and
Chow
W. L.
,
1981
, “
A Numerical Study of the Turbulent Flow Past an Isolated Airfoil With Trailing Edge Separation
,”
AIAA Journal
, Vol.
21
, pp.
1525
1532
.
23.
Scheuerer, G., 1983, “Entwicklung eines Verfahrens zur Berechnung zweidimensionaler Grenzschichten an Gasturbinenschaufeln,” Dissertation, Universita¨t Karlsruhe, Germany, pp. 28–33.
24.
Schlichting, H., 1965, Grenzschichttheorie, Verlag G. Braun, pp. 556–564.
25.
Schulz, H., and Volgmann, W., 1992, “Stationa¨re Berechnung der ra¨umlichen Stro¨mung in hydrodynamischen Wandlern,” Report SFB 278, Ruhr-Universita¨t Bochum, Germany.
26.
Stone
H. L.
,
1968
, “
Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations
,”
SIAM Journal on Numerical Analysis
, Vol.
5
, pp.
530
558
.
27.
Thiele, M., Ziegs, K.-U., Volgmann, W., and Grahl, K. G., 1989, “Calculation of the Three-Dimensional Flow in Hydrodynamic Torque Converters,” Notes on Numerical Fluid Mechanics, Vieweg Verlag, Germany.
28.
Thiele, M., 1990, “Entwicklung eines Finite-Volumen-Verfahrens zur dreidimensionalen Berechnung von inkompressiblen, reibungsbehafteten Stro¨mungen in Laufra¨dern von Turbomaschinen,” Dissertation, Ruhr-Universia¨t Bochum, Germany.
29.
Thompson, J. F., Thames, F. C., and Mastin, C. W., 1977, “Boundary Fitted Curvilinear Coordinate Systems for Solutions of Partial Differential Equations on Fields Containing Any Number of Arbitrary Two-Dimensional Bodies,” NASA CR-2729.
30.
Ziegs, K.-U., 1987, “Berechnung dreidimensionaler, reibungsbehafteter, inkompressibler Innenstro¨mungen am Beispiel des Leitrades eines hydrodynamischen Wandlers,” Dissertation, Ruhr-Universita¨t Bochum, Germany.
This content is only available via PDF.
You do not currently have access to this content.