Unsteady, separated, high Reynolds number flow over an airfoil undergoing oscillatory motion is investigated numerically. The compressible form of the Reynolds-averaged governing equations is solved using a high-order, upwind biased numerical scheme. The turbulent flow region is computed using a one-equation turbulence model. The computed results show that the key to the accurate prediction of the unsteady loads at stall flutter conditions is the modeling of the transitional flow region at the leading edge. A simplified criterion for the transition onset is used. The transitional flow region is computed with a modified form of the turbulence model. The computed solution, where the transitional flow region is included, shows that the small laminar/transitional separation bubble forming during the pitch-up motion has a decisive effect on the near-wall flow and the development of the unsteady loads. Detailed comparisons of computed fully turbulent and transitional flow solutions with experimental data are presented.

1.
Carta
F. O.
, and
Lorber
P. F.
, “
Experimental Study of the Aerodynamics of Incipient Tortional Stall Flutter
,”
Journal of Propulsion
, Vol.
3
, No.
2
,
1987
, pp.
164
170
.
2.
Sisto, F., “Stall Flutter,” AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines, Vol. 1, AGARD-AG-298, Mar. 1987, Chap. 7.
3.
Abdel-Rahim
A.
,
Sisto
F.
, and
Thangam
S.
, “
Computational Study of Stall Flutter in Linear Cascades
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
115
,
1993
, pp.
157
166
.
4.
Jang
H. M.
,
Ekaterinaris
J. A.
,
Platzer
M. F.
, and
Cebeci
T.
, “
Essential Ingredients for the Computation of Steady and Unsteady Boundary Layers
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
113
,
1991
, pp.
608
616
.
5.
Cebeci
T.
,
Platzer
M. F.
,
Jang
H. M.
, and
Chen
H. H.
, “
An Inviscid-Viscous Interaction Approach to the Calculation of Dynamic Stall Initiation on Airfoils
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
115
,
1993
, pp.
714
723
.
6.
Clarkson, J. D., Ekaterinaris, J. A., and Platzer, M. F., “Computational Investigation of Airfoil Stall Flutter,” Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines and Propellers, H. M. Atassi, ed., Springer-Verlag, New York, 1993, pp. 415–432.
7.
Baldwin, B. S., and Lomax, H., “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows,” AIAA Paper No. 78-257, Jan. 1978.
8.
Yakhot, V., and Orzag, S. A., “Renormalization Group Analysis of Turbulence. 1—Basic Theory,” Journal of Scientific Computing, Vol. 1, 1986.
9.
Johnson
D. A.
, and
King
L. S.
, “
A Mathematically Simple Turbulence Closure Model for Attached and Separated Turbulent Boundary Layers
,”
AIAA Journal
, Vol.
23
,
1985
, pp.
1684
1692
.
10.
McCroskey, W. J., “The Phenomenon of Dynamic Stall,” NASA TM-81264, Mar. 1981.
11.
Cebeci, T., and Smith, A. M., Analysis of Turbulent Boundary Layers, Academic Press, New York, 1974.
12.
Baldwin, B. S., and Barth, T. J., “A One-Equation Turbulence Transport Model for High Reynolds Number Wall-Bounded Flows,” NASA TM 102847, 1990.
13.
Spalart, P. R., and Allmaras, S. R., “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA Paper No. 92-0439, Jan. 1992.
14.
Srinivasan, G. R., Ekaterinaris, J. A., and McCroskey, W. J., “Dynamic Stall of an Oscillating Wing, Part 1: Evaluation of Turbulence Models,” AIAA Paper No. 93-3403, Aug. 1993.
15.
Jones
W. P.
, and
Launder
B. E.
, “
The Calculation of Low-Reynolds-Number-Phenomena With a Two-Equation Model of Turbulence
,”
International Journal of Heat and Mass Transfer
, Vol.
16
,
1973
, pp.
1119
1130
.
16.
Wilcox
D. C.
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA Journal
, Vol.
26
,
1988
, pp.
1299
1310
.
17.
Ekaterinaris, J. A., and Menter, F. R., “Computation of Separated and Unsteady Flows with One and Two Equation Turbulence Models,” AIAA Paper No. 94-0190, Jan. 1994.
18.
Dindar, M., and Kaynak, U., “Effect of Turbulence Modeling on Dynamic Stall of a NACA-0012 Airfoil,” AIAA Paper No. 92-0027, Jan. 1992.
19.
Wilder, M. C., Chandrasekhara, M. S., and Carr, L. W., “Transition Effects on Compressible Dynamic Stall of Transiently Pitching Airfoils,” AIAA Paper No. 93-2978, July 1993.
20.
Ekaterinaris, J. A., Chandrasekhara, M. S., and Platzer, M. F., “Analysis of Low Reynolds Number Airfoils,” AIAA Paper No. 94-0534, Jan. 1994.
21.
Hoheisel, H., “A Comparison of Laser Doppler Anemometry and Probe Measurements Within the Boundary Layer of an Airfoil in Subsonic Flow,” Proc. Laser-Doppler Anemometry in Fluid Mechanics, Second International Symposium on Applications of Laser Anemometry to Fluid Mechanics, Lisbon, Portugal, July 1984, pp. 143–157.
22.
Herbert, Th., “Boundary Layer Transition Analysis and Prediction Revisited,” AIAA Paper No. 91-0737, Jan. 1991.
23.
Bertolotti, F. P., “Compressible Boundary Layer Stability Analyzed With the PSE Equations,” AIAA Paper No. 91-1637, June 1991.
24.
Osher
S.
, and
Solomon
F.
, “
Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws
,”
Mathematics of Computation
, Vol.
38
, No.
158
,
1982
, pp.
339
374
.
25.
Osher
S.
, and
Chakravarthy
S. R.
, “
Upwind Schemes and Boundary Conditions With Applications to Euler Equations in General Geometries
,”
Journal of Computational Physics
, Vol.
50
,
1983
, pp.
447
481
.
26.
Steger
J. L.
, and
Warming
R. F.
, “
Flux Vector Splitting of the Inviscid Gas Dynamic Equations With Applications to Finite-Difference Methods
,”
Journal of Computational Physics
, Vol.
40
,
1981
, pp.
263
293
.
27.
Ekaterinaris, J. A., Cricelli, A. S., and Platzer, M. F., “A Zonal Method for Unsteady, Viscous, Compressible Airfoil Flows,” Journal of Fluids and Structures, Vol. 8, Jan. 1994.
28.
Tuncer, I., Ekaterinaris, J. A., and Platzer, M. F., “A Viscous-Inviscid Interaction Method for 2-D Unsteady, Compressible Flows,” AIAA Paper No. 93-3019, Jul. 1993.
29.
Chen
K. K.
, and
Thyson
N. A.
, “
Extension of Emmons’ Spot Theory to Flows of Blunt Bodies
,”
AIAA Journal
, Vol.
9
,
1971
, pp.
821
825
.
This content is only available via PDF.
You do not currently have access to this content.