Osborne Reynolds’ developments of the concepts of Reynolds averaging, turbulence stresses, and equations for mean kinetic energy and turbulence energy are viewed in the light of 100 years of subsequent flow research. Attempts to use the Reynolds energy-balance method to calculate the lower critical Reynolds number for pipe and channel flows are reviewed. The modern use of turbulence-energy methods for boundary layer transition modeling is discussed, and a current European Working Group effort to evaluate and develop such methods is described. The possibility of applying these methods to calculate transition in pipe, channel, and sink flows is demonstrated using a one-equation, q-L, turbulence model. Recent work using the equation for the kinetic energy of mean motion to gain understanding of loss production mechanisms in three-dimensional turbulent flows is also discussed.

1.
Abu-Ghannam, B. J., and Shaw, R., 1980, “Natural Transition of Boundary Layers—the Effects of Turbulence, Pressure Gradient and Flow History,” J. Mechanical Engineering Science, Vol. 22, No. 5.
2.
Arnal, D., 1984, “Description and Prediction of Transition in Two-Dimensional, Incompressible Flow,” NATO AGARD Report No. 709, Special Course on Stability and Transition of Laminar Flow.
3.
Beckwith, I. E., and Bushnell, D. M., 1968, “Detailed Description and Results of a Method for Computing Mean and Fluctuating Quantities in Turbulent Boundary Layers,” NASA TN D-4815.
4.
Couette
M.
,
1890
,
Ann. Chim. Phys.
, Vol.
21
, p.
433
433
.
5.
Davies
S. J.
, and
White
C. M.
,
1928
, “
An Experimental Study of the Flow of Water in Pipes of Rectangular Section
,”
Proc. Roy. Soc. A
, Vol.
119
, p.
92
92
.
6.
Emmons
H. W.
,
1951
, “
The Laminar-Turbulent Transition in Boundary Layer—Part I
,”
J. Aero. Sci.
, Vol.
18
, pp.
490
498
.
7.
Glushko, G. S., 1965, “Turbulent Boundary Layer on a Flat Plate in an Incompressible Fluid,” Bull. Acad. Sci. USSR, Mech. Ser., No. 4, pp. 13–23; English trans. in NASA TTF 10, 080.
8.
Gostelow, J. P., 1984, Cascade Aerodynamics, Pergamon Press, New York.
9.
Gregory-Smith
D. G.
, and
Cleak
W. J. E.
,
1992
, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
114
, No.
1
, pp.
173
183
.
10.
Hinze, J. O., 1975, Turbulence, 2nd ed., McGraw-Hill, New York, p. 72.
11.
Hirsch, C., 1993, “ERCOFTAC: A European Research Network on Flow, Turbulence and Combustion,” ASME Paper No. 93-GT-369.
12.
Lamb, H., 1932, Hydrodynamics, Dover Publications, New York.
13.
Langston
L. S.
,
1980
, “
Crossflow in a Turbine Cascade Passage
,”
ASME Journal of Engineering for Power
, Vol.
102
, pp.
866
874
.
14.
Launder
B. E.
, and
Jones
W. P.
,
1969
, “
Sink Flow Turbulent Boundary Layers
,”
J. Fluid Mech.
, Vol.
38
, Part 4, pp.
817
831
.
15.
Launder
B. E.
, and
Sharma
B. I.
,
1974
, “
Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Letters in Heat and Mass Transfer
, Vol.
1
, pp.
131
138
.
16.
Lindgren
E. R.
,
1957
,
Archiv fu¨r Fysik
, Vol.
12
, p.
1
1
.
17.
Lorentz
H. A.
,
1907
, “
Uber die Entstehung turbulenter Flussigkeitsbewegungen und uber den Einfluss dieser Bewegungen bei der Stromung durch Rohren
,”
Abhandlungen uber theoretische Physik
, Vol.
1
, p.
43
43
, Leipzig.
18.
Mayle
R. E.
,
1991
, “
The Role of Laminar–Turbulent Transition in Gas Turbine Engines
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
113
, pp.
509
537
.
19.
McDonald
H.
, and
Fish
R. W.
,
1973
, “
Practical Calculations of Transitional Boundary Layers
,”
Int. J. Heat and Mass Transfer
, Vol.
16
, pp.
1729
1744
.
20.
Moore
J.
, and
Adhye
R. Y.
,
1985
, “
Secondary Flows and Losses Downstream of a Turbine Cascade
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
107
, pp.
961
968
.
21.
Moore, J., and Moore, J. G., 1983a, “Entropy Production Rates From Viscous Flow Calculations, Part I—A Turbulent Boundary Layer Flow,” ASME Paper No. 83-GT-70.
22.
Moore, J., and Moore, J. G., 1983b, “Entropy Production Rates From Viscous Flow Calculations, Part II—Flow in a Rectangular Elbow,” ASME Paper No. 83-GT-71.
23.
Moore
J.
,
Moore
J. G.
, and
Timmis
P. H.
,
1984
, “
Performance Evaluation of Centrifugal Compressor Impellers Using Three-Dimensional Viscous Flow Calculations
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
106
, pp.
475
481
.
24.
Moore
J.
,
Shaffer
D. M.
, and
Moore
J. G.
,
1987
, “
Reynolds Stresses and Dissipation Mechanisms Downstream of a Turbine Cascade
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
109
, pp.
258
267
.
25.
Morkovin, M. V., 1969, “On the Many Faces of Turbulence,” Viscous Drag Reduction, C. S. Wells, ed., Plenum Press, New York, pp. 1–31.
26.
Patel
V. C.
, and
Head
M. R.
,
1969
, “
Some Observations on Skin Friction and Velocity Profiles in Fully Developed Pipe and Channel Flows
,”
J. Fluid Mechanics
, Vol.
38
, Part 1, pp.
181
204
.
27.
Patel
V. C.
,
Rodi
W.
, and
Scheuerer
G.
,
1985
, “
Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review
,”
AIAA Journal
, Vol.
23
, No.
9
, pp.
1308
1319
.
28.
Prandtl
L.
,
1934
, “
The Mechanics of Viscous Fluids
,”
Aerodynamic Theory
, W. F. Durand, ed., Vol.
III
, pp.
178
190
.
29.
Prandtl, L., 1945, “Uber ein neues Formelsystem der ausgebildeten Turbulenz,” Nachr. Akad. Wiss. Gottingen, pp. 6–19; also Coll. Works II, pp. 874–888.
30.
Reynolds
O.
,
1883
, “
An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall be Direct of Sinuous, and of the Law of Resistance in Parallel Channels
,”
Phil. Trans. Roy. Soc. A
, Vol.
175
, p.
935
935
.
31.
Reynolds
O.
,
1895
, “
On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion
,”
Phil. Trans. Roy. Soc. A
, Vol.
186
, p.
123
123
.
32.
Savill, A. M., 1992, “Transition Modelling for Turbomachinery,” Proceedings of the ERCOFTAC Turbomachinery Special Interest Group Seminar and Workshop on 3D Turbomachinery Flow Prediction, Part I.
33.
Schlichting, H., 1979, Boundary-Layer Theory, McGraw-Hill, New York.
34.
Schubauer, G. B., and Klebanoff, P. S., 1955, “Contribution to the Mechanism of Boundary-Layer Transition,” NACA TN No. 3489.
35.
Wang
T.
,
Simon
T. W.
, and
Buddhavarapu
J.
,
1985
, “
Heat Transfer and Fluid Mechanics Measurements in Transitional Boundary Layer Flows
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
107
, pp.
1007
1015
.
This content is only available via PDF.
You do not currently have access to this content.