A phenomenological model is proposed that relates the effect of free-stream turbulence to the increase in stagnation point heat transfer. The model requires both turbulence intensity and energy spectra as inputs to the unsteady velocity at the edge of the boundary layer. The form of the edge velocity contains both a pulsation of the incoming flow and an oscillation of the streamlines. The incompressible unsteady and time-averaged boundary layer response is determined by solving the momentum and energy equations. The model allows for arbitrary two-dimensional geometry; however, results are given only for a circular cylinder. The time-averaged Nusselt number is determined theoretically and compared to existing experimental data.

This content is only available via PDF.
You do not currently have access to this content.