This paper describes the application of a solution-adaptive, three-dimensional Navier–Stokes solver to the problem of the flow in turbine internal coolant passages. First, the variation of Nusselt number in a cylindrical, multiribbed duct is predicted and found to be in acceptable agreement with experimental data. Then the flow is computed in the serpentine coolant passage of a radial inflow turbine including modeling the internal baffles and pin fins. The aerodynamics of the passage, particularly that associated with the pin fins, is found to be complex. The predicted heat transfer coefficients allow zones of poor coolant penetration and potential hot spots to be identified.

This content is only available via PDF.
You do not currently have access to this content.