Boundary layers on turbomachinery blades develop in a flow that is periodically disturbed by the wakes of upstream blade cascades. These wakes have a significant effect upon laminar-turbulent boundary-layer transition. In order to study these effects, detailed velocity measurements using hot-wire probes were performed within the boundary-layer of a plate in flow periodically disturbed by wakes produced by bars moving transversely to the flow. The measurements were evaluated using the ensemble-averaging technique. The results show how the wake disturbance enters the boundary-layer and leads to a turbulent patch, which grows and is carried downstream. In favorable pressure gradients, transition due to wake turbulence occurred much earlier than predicted by linear stability theory. Between two wakes, laminar becalmed regions were observed far beyond the point at which the undisturbed boundary-layer was already turbulent.

This content is only available via PDF.
You do not currently have access to this content.