A numerical simulation of a transonic mixed-flow turbine stage has been carried out using an average passage Navier–Stokes analysis. The mixed-flow turbine stage considered here consists of a transonic nozzle vane and a highly loaded rotor. The simulation was run at the design pressure ratio and is assessed by comparing results with those of an established throughflow design system. The three-dimensional aerodynamic loads are studied as well as the development and migration of secondary flows and their contribution to the total pressure loss. The numerical results indicate that strong passage vortices develop in the nozzle vane, mix out quickly, and have little impact on the rotor flow. The rotor is highly loaded near the leading edge. Within the rotor passage, strong spanwise flows and other secondary flows exist along with the tip leakage vortex. The rotor exit loss distribution is similar in character to that found in radial inflow turbines. The secondary flows and nonuniform work extraction also tend to redistribute a nonuniform inlet total temperature profile significantly by the exit of the stage.

This content is only available via PDF.
You do not currently have access to this content.