The aerodynamic design of a centrifugal compressor for technologically advanced small aeroengines requires more and more the use of sophisticated computational tools in order to meet the goals successfully at minimum cost development. The objective of the present work is the description of the procedure adopted to design a transonic impeller having 1.31 relative Mach number at the inducer tip, 45 deg back-swept exit blade angle, and a tip speed of 636 m/s. The optimization of the blade shape has been done by analyzing the aerodynamic flowfield by extensive use of a quasi-three-dimensional code and a fully three-dimensional Euler solver based on a time-marching approach and a finite volume discretization. Testing has been done on the impeller-only configuration, using a compressor rig that simulates real engine hardware, i.e., having an S-shaped air-intake. The overall performance of the impeller is presented and discussed.

This content is only available via PDF.
You do not currently have access to this content.