Film-cooling effectiveness was studied using a row of inclined holes that injected cryogenically cooled air across a flat, adiabatic test plate. The density ratio of the coolant to mainstream varied from 1.2 to 2.0. Surface temperatures were measured using a unique surface thermocouple arrangement free of conduction errors. Temperatures were obtained along the jet centerline and across a number of lateral locations. By independently varying density ratio and blowing rate, scaling of adiabatic effectiveness with mass flux ratio, velocity ratio, and momentum ratio was determined. Depending on the momentum flux ratio, the jet either remains attached to the surface, detaches and then reattaches, or is fully detached. For attached jets, the centerline effectiveness scaled with the mass flux ratio. However, for detached-reattached jets, a consistent scaling was not found although the general distribution of the centerline effectiveness scaled with momentum flux ratio. Laterally averaged effectiveness was found to be dependent on density ratio and momentum flux ratio. Decreases in density ratio and increases in momentum flux ratio were found to reduce the spreading of the film cooling jet significantly and thereby reduce laterally averaged effectiveness.

This content is only available via PDF.
You do not currently have access to this content.