Aeroengine intakes containing S-shaped diffusers produce different types of inlet swirl distortions and essentially a combination of a twin swirl and a bulk swirl. The main object of this investigation was to assess the influence of inlet swirl distortions on the performance of a transonic two-stage axial compressor installed in a turbo jet bypass engine Larzac 04. A typical inlet swirl distortion was simulated by a delta-wing in front of the engine. An experimental method was investigated to measure the performance map of the installed low-pressure compressor for different engine operating lines. The influence of an inlet swirl distortion with different strengths on the performance map of the compressor was investigated experimentally. It is shown that the performance parameters decrease and a temperature distortion is generated behind the compressor. As the basis of the theoretical investigations of the performance map, including inlet swirl distortions, a computing model considering four compressors working in parallel was established. The model is based on the idea that an inlet swirl distortion can be substituted by two fundamental types of swirl components, i.e., a bulk swirl corotating, and a bulk swirl counterrotating to the revolution of the compressor. Computed performance maps of the compressor will be discussed and compared with the experimental data.

This content is only available via PDF.
You do not currently have access to this content.