The fluid dynamics of turbomachines are extremely complex, due in part to the aerodynamic interactions between rotors and stators. It is necessary to acquire fluid dynamic data that reflect the interactive nature of a turbomachine to correlate with the fluid dynamics predicted from modern analyses. The temporal and spatial variations in the midspan aerodynamics of the second stage of a two-stage compressor have been studied with a two-component LDV system. Spatial variations were examined by traversing the LDV probe volume through a dense matrix of both axial and circumferential positions, while temporal resolution was achieved by acquiring all data as a function of the instantaneous rotor position. Hence, the data set reveals rotor and stator wake structure and decay in both the stationary and rotating frames of reference. The data also compared very favorably with extensive pneumatic measurements previously acquired in this compressor. In Part 2 of the paper, the data are used in the assessment of a prediction of the flow in the compressor using a time-accurate, thin-layer, two-dimensional Navier–Stokes analysis.

This content is only available via PDF.
You do not currently have access to this content.