Solutions of the differential boundary-layer equations, using the Keller-box scheme and the Cebeci-Smith eddy-viscosity model for turbulent flow, have been used to predict the Nusselt numbers on the disks of a heated rotating cavity with a radial outflow of cooling air. Computed Nusselt numbers were in satisfactory agreement with analytical solutions of the elliptic equations for laminar flow and with solutions of the integral equations for turbulent flow. For a wide range of flow rates, rotational speeds, and disk-temperature profiles, the computed Nusselt numbers were in mainly good agreement with measurements obtained from an air-cooled rotating cavity. It is concluded that the boundary-layer equations should provide solutions accurate enough for application to air-cooled gas turbine disks.

This content is only available via PDF.
You do not currently have access to this content.