A combined experimental and analytical program was conducted to examine the effects of inlet turbulence, stator–rotor axial spacing, and relative circumferential spacing of first and second stators on turbine airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approximately 5× engine), ambient temperature, stage-and-a half rotating turbine model. The data indicate that while turbine inlet turbulence can have a very strong impact on the first stator heat transfer, its impact in downstream rows is minimal. The effects on heat transfer produced by relatively large changes in stator/rotor spacing or by changing the relative row-to-row circumferential positions of stators were very small. Analytical results consist of airfoil heat transfer distributions computed with a finite-difference boundary layer code. Data obtained in this same model for various Reynolds numbers and rotor incidence angles are presented in a companion paper (Part II).

This content is only available via PDF.
You do not currently have access to this content.