Predictions of the isothermal, incompressible flow in the cavity formed between two corotating plane disks and a peripheral shroud have been obtained using an elliptic calculation procedure and a low turbulence Reynolds number k–ε model for the estimation of turbulent transport. Both radial inflow and outflow are investigated for a wide range of flow conditions involving rotational Reynolds numbers up to ∼106. Although predictive accuracy is generally good, the computed flow in the Ekman layers for radial outflow often displays a retarded spreading rate and a tendency to laminarize under conditions that are known from experiment to produce turbulent flow.

This content is only available via PDF.
You do not currently have access to this content.