The paper describes a theoretical and experimental study of fog droplet deposition and coarse water formation in the LP cylinders of two 500 MW steam turbines. Measurements of coarse water flow rates entering and leaving the final stage of each turbine were performed using a new design of water absorbent probe. From these measurements it was possible to deduce the rate of deposition of fog droplets onto the last stage blading of each machine. Aerodynamic and optical traverses provided experimental data on the fog droplet mean diameter and wetness faction, and the application of an inversion procedure generated an approximation to the droplet size spectrum itself. Using these data and theoretical methods for predicting inertial and diffusional deposition rates, a second estimate was obtained for the stage deposition rates. The two different approaches show excellent agreement, in contrast with previously published work, which was unable to reconcile (to within one order of magnitude) deposition theory with measured fog droplet sizes and coarse water quantities.

This content is only available via PDF.
You do not currently have access to this content.