Abstract

This paper proposes a novel dual-drive hydrostatic lead-screw system (DDHLS). The design enables a lower feed speed and a better transmission performance than the conventional hydrostatic lead screw (HLS). Considering the nut-misalignment, the lubricating mathematical model of the DDHLS is established based on the perturbation method and solved by the finite difference method. The influences of the nut-radial-displacement, the nut-tilt, and the dual-drivable design on the transmission performance of the DDHLS are researched. The results show the nut-misalignment can regularly reduce or increase the axial load capacity, the axial stiffness coefficient, and the axial damping coefficient. Significantly, the dual-drivable design can improve the axial load capacity and the axial stiffness coefficient while hardly affects the axial damping coefficient.

This content is only available via PDF.
You do not currently have access to this content.