Abstract

A general contact model for a lap joint interface based on non-Gaussian surfaces was proposed. The effect of surface topography parameters on microslip behavior in a lap joint interface was studied. Pearson system was applied to produce non-Gaussian surfaces. Combining the topographical-dependent Zhao–Maietta–Chang (ZMC) model with the physical-related Iwan model, the nonlinear constitutive relationship of a lap interface was constructed by using Masing hypothesis. Meanwhile, the probability density function of asperity heights of an infinitely smooth surface was mathematically proved to be a delta function, verifying that the calculated value of friction in the model conforms to the physical law. Gauss-Legendre quadrature was conducted to calculate contact relations of different Pearson distribution surfaces. Furthermore, numerical results of microslip loops under oscillating tangential forces were compared with the published experiments, indicating the present model considering non-Gaussian surfaces could agree well with the experiments.

References

References
1.
Czichos
,
H.
,
1978
,
Tribology—A System Approach to the Science and Technology of Friction, Lubrication and Wear
,
Elsevier
,
Amsterdam
.
2.
Cattaneo
,
C.
,
1938
, “
Sul Contatto di due Corpi Elastici: Distribuzione Locale Degli Sforzi
,”
Accademia dei Lincei
,
27
(
6
), pp.
474
478
.
3.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
259
268
.
4.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2011
, “
Physics-Based Modeling for Fretting Behavior of Nominally Flat Rough Surfaces
,”
Int. J. Solids Struct.
,
48
(
10
), pp.
1436
1450
. 10.1016/j.ijsolstr.2011.01.028
5.
Courtney-Pratt
,
J. S.
, and
Eisner
,
E.
,
1957
, “
The Effect of a Tangential Force on the Contact of Metallic Bodies
,”
Proc. R. Soc. London
,
238
(
1215
), pp.
529
550
. 10.1098/rspa.1957.0016
6.
Goodman
,
L. E.
, and
Brown
,
B. C.
,
1962
, “
Energy Dissipation in Contact Friction: Constant Normal and Cyclic Tangential Loading
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
17
22
. 10.1115/1.3636453
7.
Björklund
,
S.
, and
Andersson
,
S.
,
1994
, “
A Numerical Method for Real Elastic Contacts Subjected to Normal and Tangential Loading
,”
Wear
,
179
(
1–2
), pp.
117
122
. 10.1016/0043-1648(94)90228-3
8.
Naboulsi
,
S.
, and
Nicholas
,
T.
,
2003
, “
Limitations of the Coulomb Friction Assumption in Fretting Fatigue Analysis
,”
Int. J. Solids Struct.
,
40
(
23
), pp.
6497
6512
. 10.1016/S0020-7683(03)00401-3
9.
Pesaresi
,
L.
,
Armand
,
J.
,
Schwingshackl
,
C. W.
,
Salles
,
L.
, and
Wong
,
C.
,
2018
, “
An Advanced Underplatform Damper Modelling Approach Based on a Microslip Contact Model
,”
J. Sound Vib.
,
436
(
2018
), pp.
327
340
. 10.1016/j.jsv.2018.08.014
10.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. A
,
295
(
1442
), pp.
300
319
. 10.1098/rspa.1966.0242
11.
Pullen
,
J.
, and
Williamson
,
J. B. P.
,
1972
, “
On the Plastic Contact of Rough Surfaces
,”
Proc. R. Soc. London
,
327
(
1569
), pp.
159
173
. 10.1098/rspa.1972.0038
12.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
. 10.1115/1.3261348
13.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
. 10.1115/1.555332
14.
Patil
,
D. B.
, and
Eriten
,
M.
,
2014
, “
Effects of Interfacial Strength and Roughness on the Static Friction Coefficient
,”
Tribol. Lett.
,
56
(
2
), pp.
355
374
. 10.1007/s11249-014-0414-0
15.
Hoang
,
T. V.
,
L
,
W. U.
,
Golinval
,
C.
,
Arnst
,
M.
, and
Noels
,
L.
,
2018
, “
Stochastic Multiscale Model of MEMS Stiction Accounting for High-Order Statistical Moments of non-Gaussian Contacting Surfaces
,”
J. Microelectromech. Syst.
,
27
(
2
), pp.
137
155
. 10.1109/JMEMS.2018.2797133
16.
Björklund
,
S.
,
1997
, “
A Random Model for Micro-Slip Between Nominally Flat Surfaces
,”
ASME J. Tribol.
,
119
(
4
), pp.
726
732
. 10.1115/1.2833877
17.
Mindlin
,
R. D.
,
Mason
,
W. P.
,
Osmer
,
J. F.
, and
Deresiewicz
,
H.
,
1951
, “
Effects of an Oscillating Tangential Force on the Contact Surfaces of Elastic Spheres
,”
Proceedings of First US National Congress on Applied Mechanics
,
New York
,
June
, pp.
203
208
.
18.
Iwan
,
W. D.
,
1966
, “
A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
893
900
. 10.1115/1.3625199
19.
Segalman
,
D. J.
,
2005
, “
A Four-Parameter Iwan Model for Lap-Type Joints
,”
ASME J. Appl. Mech.
,
72
(
5
), pp.
752
760
. 10.1115/1.1989354
20.
Argatov
,
I. I.
, and
Butcher
,
E. A.
,
2011
, “
On the Iwan Models for Lap-Type Bolted Joints
,”
Int. J. NonLin. Mech.
,
46
(
2
), pp.
347
356
. 10.1016/j.ijnonlinmec.2010.09.018
21.
Zhan
,
W. L.
, and
Huang
,
P.
,
2018
, “
Physics-Based Modeling for Lap-Type Joints Based on the Iwan Model
,”
ASME J. Tribol.
,
140
(
5
), p.
051401
. 10.1115/1.4039530
22.
Spedding
,
T. A.
,
King
,
T. G.
,
Watson
,
W.
, and
Stout
,
K. J.
,
1980
, “
The Pearson System of Distributions: Its Application to Non-Gaussian Surface Metrology and a Simple Wear Model
,”
ASME J. Lubr. Tech.
,
102
(
4
), pp.
495
500
. 10.1115/1.3251585
23.
Yu
,
N.
,
2002
, “
Contact of Rough Surfaces With Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
,
124
(
2
), pp.
367
376
. 10.1115/1.1403458
24.
Chilamakuri
,
S. K.
, and
Bhushan
,
B.
,
1998
, “
Contact Analysis of Non-Gaussian Random Surfaces
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
212
(
1
), pp.
19
32
. 10.1243/1350650981541868
25.
Tayebi
,
N.
, and
Polycarpou
,
A. A.
,
2004
, “
Modeling the Effect of Skewness and Kurtosis on the Static Friction Coefficient of Rough Surfaces
,”
Tribol. Int.
,
37
(
6
), pp.
491
505
. 10.1016/j.triboint.2003.11.010
26.
Kendall
,
M. G.
,
1945
,
The Advanced Theory of Statistics
,
Charles Griffin and Company
,
London
.
27.
Johnson
,
N. L.
,
Kotz
,
S.
, and
Balakrishnan
,
N.
,
1994–1995
,
Continuous Univariate Distributions
,
John Wiley and Sons
,
New York
.
28.
Nagahara
,
Y.
,
2004
, “
A Method of Simulating Multivariate Nonnormal Distributions by the Pearson Distribution System and Estimation
,”
Comput. Stat. Data Anal.
,
47
(
1
), pp.
1
29
. 10.1016/j.csda.2003.10.008
29.
Sanliturk
,
K. Y.
, and
Ewins
,
D. J.
,
1996
, “
Modelling Two-Dimensional Friction Contact and Its Application Using Harmonic Balance Method
,”
J. Sound Vib.
,
193
(
2
), pp.
511
523
. 10.1006/jsvi.1996.0299
30.
Ahmadian
,
H.
, and
Rajaei
,
M.
,
2014
, “
Identification of Iwan Distribution Density Function in Frictional Contacts
,”
J. Sound Vib.
,
333
(
15
), pp.
3382
3393
. 10.1016/j.jsv.2014.03.021
31.
Sanati
,
M.
,
Terashima
,
Y.
,
Shamoto
,
E.
, and
Park
,
S. S.
,
2018
, “
Development of a New Method for Joint Damping Identification in a Bolted Lap Joint
,”
J. Mech. Sci. Technol.
,
32
(
5
), pp.
1975
1983
. 10.1007/s12206-018-0405-4
32.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
48
), pp.
625
633
. 10.1243/PIME_PROC_1970_185_069_02
33.
Yuan
,
Y.
,
Cheng
,
Y.
,
Liu
,
K.
, and
Gan
,
L.
,
2017
, “
A Revised Majumdar and Bushan Model of Elastoplastic Contact Between Rough Surfaces
,”
Appl. Surf. Sci.
,
425
(
1
), pp.
1138
1157
. 10.1016/j.apsusc.2017.06.294
34.
McCool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
(
1
), pp.
37
60
. 10.1016/0043-1648(86)90045-1
35.
Archard
,
J. F.
,
1974
, “
Surface Topography and Tribology
,”
Tribol. Int.
,
7
(
5
), pp.
213
220
. 10.1016/0301-679X(74)90041-3
36.
Keener
,
J. P.
,
2018
, “Differential Operators and Green’s Functions,”
Principles of Applied Mathematics: Transformation and Approximation
,
CRC Press-Taylor and Francis Group
,
Boca Raton
, pp.
135
139
.
37.
Weber
,
B.
,
Suhina
,
T.
,
Junge
,
T.
,
Pastewka
,
L.
,
Brouwer
,
A. W.
, and
Bonn
,
D.
,
2018
, “
Molecular Probes Reveal Deviations From Amontons’ Law in Multi-Asperity Frictional Contacts
,”
Nat. Commun.
,
9
(
1
), p.
888
. 10.1038/s41467-018-02981-y
38.
Brake
,
M. R. W.
,
2017
, “
A Reduced Iwan Model That Includes Pinning for Bolted Joint Mechanics
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1335
1349
. 10.1007/s11071-016-3117-2
39.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2012
, “
A Physics-Based Friction Model and Integration to a Simple Dynamical System
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051012
. 10.1115/1.4006182
40.
Abdo
,
J.
, and
Farhang
,
K.
,
2005
, “
Elastic–Plastic Contact Model for Rough Surfaces Based on Plastic Asperity Concept
,”
Int. J. Nonlin. Mech.
,
40
(
4
), pp.
495
506
. 10.1016/j.ijnonlinmec.2004.08.003
41.
Kovacevic
,
R.
,
Mohan
,
R.
, and
Zhang
,
Y. M.
,
1995
, “
Cutting Force Dynamics as a Tool for Surface Profile Monitoring in AWJ
,”
ASME J. Eng. Ind.
,
117
(
3
), pp.
340
350
. 10.1115/1.2804339
42.
Kotwal
,
C. A.
, and
Bhushan
,
B.
,
1996
, “
Contact Analysis of Non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear
,”
Tribol. Trans.
,
39
(
4
), pp.
890
898
. 10.1080/10402009608983609
43.
Bank
,
R. E.
, and
Yserentant
,
H.
,
2015
, “
A Note on Interpolation, Best Approximation, and the Saturation Property
,”
Numerische Mathematik
,
131
(
1
), pp.
199
203
. 10.1007/s00211-014-0687-0
You do not currently have access to this content.