Shallow grooving in a herringbone pattern has been proposed to enhance the stability of both gas and liquid-lubricated journal bearings. It has been shown theoretically that this possibility is particularly advantageous for unloaded journal bearings. This paper describes corroborating experiments. The experiments included the running of an unloaded bearing up to speeds of 60,000 rpm and the collection of steady-state load-displacement, attitude angle data at intermediate speeds up to and including 60,000 rpm. No sign of bearing whirl instability was detected. There was good correlation between theoretical and experimental data. Design data for the partially grooved journal bearing is included for future designs.

This content is only available via PDF.
You do not currently have access to this content.