Abstract

This article presents numerical and experimental studies into the wear characteristics and lubrication properties of Cu-based clutch containing Cu@C particles (i.e., carbon-coated copper particles). A hybrid elastohydrodynamic lubrication (EHL) model of rough surface contact is established, incorporating equations that consider factors such as micro-asperity contact and particle loading. Tribological tests were carried out by means of a pin-on-disc testing method on a tribometer with transmission lubricating oil for the Cu-based friction material. It has been ascertained that the friction coefficient lessens with the rise in relative sliding velocity and, within a certain range, decreases with increasing load. Numerical calculations indicate that dynamic pressure oil film dominance in load-carrying is influenced by the mass fraction of the particles, which affects the pressure carried by the particles. The worn surface exhibits features such as furrows and particle debris, with a reduction of surface roughness. The research results offer a theoretical and experimental foundation for the research on lubrication and wear phenomena in Cu-based clutch containing Cu@C particles.

References

1.
Zhao
,
E.-H.
,
Ma
,
B.
, and
Li
,
H.-Y.
,
2017
, “
Wear and Lubrication Behaviors of Cu-Based Friction Pairs With Asperity Contacts: Numerical and Experimental Studies
,”
Tribol. Lett.
,
65
(
2
), p.
69
.
2.
Zhang
,
J.
, and
Meng
,
Y.
,
2015
, “
Boundary Lubrication by Adsorption Film
,”
Friction
,
3
(
2
), pp.
115
147
.
3.
Prajapati
,
D. K.
,
Katiyar
,
J. K.
, and
Prakash
,
C.
,
2023
, “
Machine Learning Approach for the Prediction of Mixed Lubrication Parameters for Different Surface Topographies of Non-conformal Rough Contacts
,”
Ind. Lubr. Tribol.
,
75
(
9
), pp.
1022
1030
.
4.
LiRan
,
M.
, and
Jian Bin
,
L.
,
2015
, “
Advances in Thin Film Lubrication (TFL): From Discovery to the Aroused Further Researches
,”
Sci. China Technol. Sci.
,
58
(
10
), pp.
1609
1616
.
5.
Lyu
,
B.
,
Zhang
,
L.
,
Meng
,
X.
, and
Wang
,
C.
,
2022
, “
A Boundary Lubrication Model and Experimental Study Considering ZDDP Tribofilms on Reciprocating Friction Pairs
,”
Tribol. Lett.
,
70
(
2
), pp.
1
16
. http:///dx.doi.org/10.1007/s11249-022-01607-1
6.
Ke
,
L.
,
Tobias
,
A.
,
Mathias
,
L.
,
Michael
,
W.
,
Michael
,
M.
,
Andreas
,
K.
, and
Juergen
,
R.
,
2015
, “
Ultralow Friction of Steel Surfaces Using a 1,3-Diketone Lubricant in the Thin Film Lubrication Regime
,”
Langmuir
,
31
(
40
), pp.
11033
11039
.
7.
Chen
,
S.
,
Yin
,
N.
,
Cai
,
X.
, and
Zhang
,
Z.
,
2021
, “
Iteration Framework for Solving Mixed Lubrication Computation Problems
,”
Front. Mech. Eng.
,
16
(
3
), pp.
635
648
.
8.
Zhang
,
H.
,
Yang
,
Q.
,
Zhao
,
W.
, and
Jiang
,
F.
,
2024
, “
Study on the Solution Algorithm of Reynolds Equation of Self-acting Gas Journal Bearings Based on a Finite Difference Method
,”
Lubr. Sci.
,
36
(
3
), pp.
231
237
.
9.
Larsen
,
J. S.
, and
Santos
,
I. F.
,
2015
, “
Efficient Solution of the Non-linear Reynolds Equation for Compressible Fluid Using the Finite Element Method
,”
J. Braz. Soc. Mech. Sci. Eng.
,
37
(
3
), pp.
945
957
.
10.
Schweizer
,
B.
,
2008
, “
Numerical Approach for Solving Reynolds Equation With JFO Boundary Conditions Incorporating ALE Techniques
,”
ASME J. Tribol.
,
131
(
1
), p.
011702
.
11.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
1999
, “
The Study of Transition From Full Film Elastohydrodynamic to Mixed and Boundary Lubrication
,” Adv. Front. Eng. Tribol. pp.
150
156
.
12.
Hu
,
Y.-Z.
, and
Zhu
,
D.
,
1999
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.
13.
Hu
,
Y.-Z.
,
Wang
,
H.
,
Wang
,
W.-Z.
, and
Zhu
,
D.
,
2001
, “
A Computer Model of Mixed Lubrication in Point Contacts
,”
Tribol. Int.
,
34
(
1
), pp.
65
73
.
14.
Wang
,
W.
,
Wang
,
H.
, and
Hu
,
Y.
,
2002
, “
Fast Computation of Surface Deformation in Lubricated Contact
,”
Tribology
,
22
(
5
), pp.
390
394
.
15.
Liu
,
M.
,
Qin
,
H.
,
Chen
,
Y.
,
Lu
,
Y.
,
Song
,
Y.
,
Gao
,
Z.
,
Xiong
,
C.
, and
Liu
,
F.
,
2024
, “
Recent Progress of Functional Solvent-Free Nanofluids: A Review
,”
ACS Appl. Mater. Interfaces
,
16
(
32
), pp.
41766
41787
.
16.
Sunil
,
K.
,
Bangar
,
D.
, and
Kumar
,
N. J.
,
2024
, “
Performance of Liquid Lubricants Using Nano-Additives in Minimum Quantity Lubrication in Machining Process
,”
J. Mater. Charact.
,
3
(
1
), pp.
24
32
.
17.
Wu
,
B.
,
Zhu
,
L.
,
Sun
,
Y.
, and
Wu
,
S.
,
2025
, “
Tribological Performance of Carbon Nanospheres as Lubricant Additives: Insights From Molecular Dynamics Simulation and Experimental Analysis
,”
ASME J. Tribol.
,
147
(
4
), p.
042201
.
18.
Gao
,
H.
,
Barber
,
G. C.
, and
Shillor
,
M.
,
2001
, “
Numerical Simulation of Engagement of a Wet Clutch With Skewed Surface Roughness
,”
ASME J. Tribol.
,
124
(
2
), pp.
305
312
.
19.
Chen
,
Y. Y.
, and
Horng
,
J. H. J. F. i. M. E.
,
2024
, “
Investigation of Lubricant Viscosity and Third-Particle Contribution to Contact Behavior in Dry and Lubricated Three-Body Contact Conditions
,”
Front. Mech. Eng.
,
10
, p.
1390335
.
20.
Gang
,
W.
,
Wei
,
W.
,
Yi
,
Z.
,
Jinlong
,
S.
,
Jimin
,
X.
, and
Kun
,
L.
,
2022
, “
A Solution for Mixed Elastohydrodynamic Lubrication Modeling Considering Effects of Solid Particles and Surface Roughness
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
236
(
11
), p.
135065012210777
.
21.
Ghaednia
,
H.
,
Babaei
,
H.
,
Jackson
,
R.
,
Bozack
,
M.
, and
Khodadadi
,
J.
,
2013
, “
The Effect of Nanoparticles on Thin Film Elasto-Hydrodynamic Lubrication
,”
Appl. Phys. Lett.
,
103
(
26
), pp.
263111
263111
.
22.
Hu
,
C.
,
Bai
,
M.
,
Lv
,
J.
, and
Li
,
X.
,
2015
, “
Molecular Dynamics Simulation of Mechanism of Nanoparticle in Improving Load-Carrying Capacity of Lubricant Film
,”
Comput. Mater. Sci.
,
109
, pp.
97
103
.
23.
Gallagher
,
I.
,
2014
, “
From Classical Mechanics to Kinetic Theory and Fluid Dynamics
,”
Journées Équations aux dérivées partielles
,
2
, pp.
1
14
.
24.
Michele
,
S.
, and
Bo
,
N. J. P.
,
2015
, “
General Contact Mechanics Theory for Randomly Rough Surfaces With Application to Rubber Friction
,”
J. Chem. Phys.
,
143
, p.
224111
.
25.
Guannan
,
W.
,
Leiting
,
D.
,
Junbo
,
W.
, and
Satya
,
N. A.
,
2018
, “
Three-Dimensional Trefftz Computational Grains for the Micromechanical Modeling of Heterogeneous Media With Coated Spherical Inclusions
,”
J. Mech. Mater. Struct.
,
13
(
4
), pp.
505
529
.
26.
Ghaednia
,
H.
, and
Jackson
,
R. L.
,
2013
, “
The Effect of Nanoparticles on the Real Area of Contact, Friction, and Wear
,”
ASME J. Tribol.
,
135
(
4
), p.
041603
.
27.
Dong
,
Y.
,
Ma
,
B.
,
Xiong
,
C.
,
Zhao
,
Q.
,
Chen
,
H.
,
Zhang
,
Y.
, and
Xie
,
G.
,
2024
, “
Tribological and Wear Properties of Cu-Based Composite Reinforced by Core–Shell Structure in Multi-Disk Clutch
,”
Tribol. Lett.
,
72
(
3
), p.
66
.
28.
Cui
,
S.
,
Gu
,
L.
,
Fillon
,
M.
,
Wang
,
L.
, and
Zhang
,
C.
,
2018
, “
The Effects of Surface Roughness on the Transient Characteristics of Hydrodynamic Cylindrical Bearings During Startup
,”
Tribol. Int.
,
128
, pp.
421
428
.
29.
Cui
,
S.
,
Gu
,
L.
,
Wang
,
L.
,
Xu
,
B.
, and
Zhang
,
C.
,
2018
, “
Numerical Analysis on the Dynamic Contact Behavior of Hydrodynamic Journal Bearings During Start-Up
,”
Tribol. Int.
,
121
, pp.
260
268
.
30.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
,
101
(
2
), pp.
220
229
.
31.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
32.
Wu
,
C.
, and
Zheng
,
L.
,
1989
, “
An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor
,”
ASME J. Tribol.
,
111
(
1
), pp.
188
191
.
33.
Xie
,
Z.
, and
Liu
,
H.
,
2020
, “
Experimental Research on the Interface Lubrication Regimes Transition of Water Lubricated Bearing
,”
Mech. Syst. Signal Process.
,
136
, p.
106522
.
34.
Xie
,
Z.
,
Wang
,
X.
, and
Zhu
,
W.
,
2022
, “
Theoretical and Experimental Exploration Into the Fluid Structure Coupling Dynamic Behaviors Towards Water-Lubricated Bearing With Axial Asymmetric Grooves
,”
Mech. Syst. Signal Process.
,
168
, p.
108624
.
35.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.
36.
Xiang
,
G.
,
Wang
,
C.
,
Wang
,
Y.
,
Han
,
Y.
,
Wang
,
J.
, and
Lv
,
Z.
,
2021
, “
Dynamic Mixed Lubrication Investigation of Water-Lubricated Bearing With Unbalanced Rotor During Start-Up
,”
Tribol. Trans.
,
64
(
4
), pp.
764
776
.
37.
Chen
,
H.
,
Zhang
,
Y.
,
Gao
,
K.
,
Ren
,
Y.
,
Jiao
,
J.
,
Zhang
,
L.
,
Guo
,
D.
, and
Xie
,
G.
,
2023
, “
Ultralow Friction Polymer Composites Enabled by the Solid–Liquid Core Microcapsules at High Temperatures
,”
Chem. Eng. J.
,
476
, p.
146780
.
38.
Hua
,
D. Y.
, and
Khonsari
,
M. M.
,
1996
, “
Elastohydrodynamic Lubrication by Powder Slurries
,”
ASME J. Tribol.
,
118
(
1
), pp.
67
73
.
39.
Khonsari
,
M. M.
,
Wang
,
S. H.
, and
Qi
,
Y. L.
,
1989
, “
A Theory of Liquid–Solid Lubrication in Elastohydrodynamic Regime
,”
ASME J. Tribol.
,
111
(
3
), pp.
440
444
.
40.
Khonsari
,
M. M.
, and
Esfahanian
,
V.
,
1988
, “
Thermohydrodynamic Analysis of Solid–Liquid Lubricated Journal Bearings
,”
ASME J. Tribol.
,
110
(
2
), pp.
367
374
.
41.
Ghaednia
,
H.
,
Wang
,
X.
,
Saha
,
S.
,
Xu
,
Y.
,
Sharma
,
A.
, and
Jackson
,
R. L.
,
2017
, “
A Review of Elastic–Plastic Contact Mechanics
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060804
.
42.
Wang
,
W.
,
Liu
,
K.
, and
Jiao
,
M.
,
2007
, “
Thermal and Non-Newtonian Analysis on Mixed Liquid–Solid Lubrication
,”
Tribol. Int.
,
40
(
7
), pp.
1067
1074
.
43.
Bair
,
S.
, and
Habchi
,
W.
,
2024
, “
Quantitative Elastohydrodynamic Lubrication—Seventeen Years In
,”
ASME J. Tribol.
,
146
(
8
), p.
080801
.
44.
Horng
,
J.-H.
,
Wei
,
C.-C.
,
Tsai
,
H.-J.
, and
Shiu
,
B.-C.
,
2009
, “
A Study of Surface Friction and Particle Friction Between Rough Surfaces
,”
Wear
,
267
(
5
), pp.
1257
1263
.
45.
Wu
,
H.-W.
, and
Chen
,
Y.-Y.
,
2017
, “
Effect of Two-Body and Three-Body Microcontacts Under Dry Friction on Contact Characteristics
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
232
(
4
), pp.
706
719
.
46.
Gholami
,
R.
,
Akbarzadeh
,
S.
,
Ziaei-Rad
,
S.
, and
Khonsari
,
M. M.
,
2020
, “
Applying Load-Sharing Method to the Sliding Contact in the Presence of Nano-Lubricants
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
235
(
4
), pp.
786
797
.
47.
Nikas
,
G. K.
,
2015
, “
Modeling Dark and White Layer Formation on Elastohydrodynamically Lubricated Steel Surfaces by Thermomechanical Indentation or Abrasion by Metallic Particles
,”
ASME J. Tribol.
,
137
(
3
), p.
031504
.
48.
Nafu
,
Y.
, and
Kingsly Mofor
,
W.
,
2022
, “
The Effect of Speed on Coefficient of Friction in African Plum Oil (Dacryodes edulis) Lubricant
,”
Asian J. Eng. Technol.
,
10
(
4
), pp.
52
61
.
49.
Liang
,
H.
,
Guo
,
D.
, and
Luo
,
J.
,
2018
, “
Film Forming Behavior in Thin Film Lubrication at High Speeds
,”
Friction
,
6
(
2
), pp.
156
163
.
50.
Jiang
,
H.
,
He
,
L.
,
Zhang
,
Q.
, and
Wang
,
L.
,
2018
, “
On Scaling Method to Investigate High-Speed Over-Tip-Leakage Flow at Low-Speed Condition
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062605
.
51.
Li
,
K.
, and
Lv
,
C.
,
2023
, “Rapid Droplet Leads the Liquid-Infused Slippery Surfaces More Slippery,” arXiv, 2309, p. 02038. https://arxiv.org/abs/2309.02038
52.
Liang
,
X. M.
,
Xing
,
Y. Z.
,
Li
,
L. T.
,
Yuan
,
W. K.
, and
Wang
,
G. F.
,
2021
, “
An Experimental Study on the Relation Between Friction Force and Real Contact Area
,”
Sci. Rep.
,
11
(
1
), p.
20366
.
53.
Pham
,
T. H.
,
Lyashenko
,
I. A.
, and
Popov
,
V. L.
,
2024
, “
Friction Between a Hard Cylinder and a Soft Elastomer in Adhesive Contact: An Experiment
,”
2024 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)
,
Zhongshan, China
,
July 29–Aug. 2
, pp.
707
711
.
54.
Dong
,
W.
,
Wang
,
D.
,
Wang
,
Z.
, and
Lin
,
Q.
,
2023
, “
Effect of Pre-strain on Surface Roughening and Frictional Behavior of DP590 High-Strength Steel
,”
J. Mater. Eng. Perform.
,
32
(
12
), pp.
5317
5328
.
55.
Fatehallah
,
H. S.
,
Hammoudi
,
Z. S.
, and
Zidane
,
L. Y.
,
2019
, “
Effect of Oil Temperature on Load Capacity and Friction Power Loss in Point Contact Elasto-hydrodynamic Lubrication
,”
Al-Nahrain J. Eng. Sci.
,
22
(
3
), pp.
180
186
.
56.
Zhu
,
Y.
,
Zhang
,
Q.
,
Zhao
,
Q.
, and
To
,
S.
,
2021
, “
The Material Removal and the Nanometric Surface Characteristics Formation Mechanism of TiC/Ni Cermet in Ultra-precision Grinding
,”
Int. J. Refract. Met. Hard Mater.
,
96
, p.
105494
.
You do not currently have access to this content.