Abstract

The present study investigates the outcome of the incorporation of different amounts of B4C particles (0–2 wt%) in AZ31 alloy on nanohardness, elastic modulus, scratch resistance, and elevated temperature tribological behavior. AZ31-B4C composites are produced by an ultrasonic stir casting technique. Mechanical properties of synthesized materials are evaluated by conducting nanoindentation tests following a constant depth method for a loading–unloading rate of 10 mN/min. The nanoindentation test reveals that the AZ31-2B4C composite possesses 98.25% and 27% enhancement in nanohardness and elastic modulus, respectively, compared to the AZ31 matrix. Scratch behavior (scratch hardness, wear loss, and friction coefficient (COF)) is studied under ramp loading conditions (20–30 N, 20–40 N, and 20–50 N) using a diamond indenter. Composite samples exhibit better scratch resistance at all experimental conditions. Experimental results disclose that AZ31-2B4C possesses around a 24% decrement in scratch width compared to AZ31 alloy. It is also observed that the wear-rate decreases linearly with an increase in wt% of B4C while COF increases moderately. The pin-on-disc type tribo-meter is utilized to study the tribological behavior of AZ31 alloy and AZ31-B4C composites at elevated temperatures (50–250 °C) under varying loads (20–40 N). The wear-rate of the base alloy increases continuously following a steep slope with respect to an increase in temperature while wear-rate composite samples do not possess any significant change up to a transition temperature after which the wear-rate increases significantly. Finally, scratch track and worn surfaces of samples tested under elevated temperature conditions are examined under SEM to evaluate dominant wear mechanisms.

References

1.
Guan
,
H.
,
Xiao
,
H.
,
Ouyang
,
S.
,
Tang
,
A.
,
Chen
,
X.
,
Tan
,
J.
,
Feng
,
B.
,
She
,
J.
,
Zheng
,
K.
, and
Pan
,
F.
,
2022
, “
A Review of the Design, Processes, and Properties of Mg-Based Composites
,”
Nanotechnol. Rev.
,
11
(
1
), pp.
712
730
.
2.
Bharathi
,
P.
, and
Sampath Kumar
,
T.
,
2023
, “
Latest Research and Developments of Ceramic Reinforced Magnesium Matrix Composites—A Comprehensive Review
,”
Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng.
,
237
(
3
), pp.
1014
1035
.
3.
Miracle
,
D. B.
,
2025
, “
Metal Matrix Composites—From Science to Technological Significance
,”
Compos. Sci. Technol.
,
65
(
15–16
), pp.
2526
2540
.
4.
Nirala
,
A.
,
Soren
,
S.
,
Kumar
,
N.
, and
Kaushal
,
D. R.
,
2020
, “
A Comprehensive Review on Mechanical Properties of Al-B4C Stir Casting Fabricated Composite
,”
Mater. Today: Proc.
,
21
, pp.
1432
1435
.
5.
Kumar
,
D.
,
Phanden
,
R. K.
, and
Thakur
,
L.
,
2021
, “
A Review on Environment Friendly and Lightweight Magnesium-Based Metal Matrix Composites and Alloys
,”
Mater. Today: Proc.
,
38
, pp.
359
364
.
6.
Banijamali
,
S. M.
,
Najafi
,
S.
,
Sheikhani
,
A.
, and
Palizdar
,
Y.
,
2022
, “
Dry Tribological Behavior of Hot-Rolled WE43 Magnesium Matrix Composites Reinforced by B4C Particles
,”
Wear
,
508
, p.
204487
.
7.
Behnamian
,
Y.
,
Serate
,
D.
,
Aghaie
,
E.
,
Zahiri
,
R.
,
Tolentino
,
Z.
,
Niazi
,
H.
, and
Mostafaei
,
A.
,
2022
, “
Tribological Behavior of ZK60 Magnesium Matrix Composite Reinforced by Hybrid MWCNTs/B4C Prepared by Stir Casting Method
,”
Tribol. Int.
,
165
, p.
107299
.
8.
Kumar
,
D. S.
,
Sasanka
,
C. T.
,
Ravindra
,
K.
, and
Suman
,
K. N. S.
,
2015
, “
Magnesium and Its Alloys in Automotive Applications—A Review
,”
Am. J. Mater. Sci. Technol.
,
4
(
1
), pp.
12
30
.
9.
Shiva Shanker
,
P.
,
2018
, “
A Review on Properties of Conventional and Metal Matrix Composite Materials in Manufacturing of Disc Brake
,”
Mater. Today: Proc.
,
5
(
2
), pp.
5864
5869
.
10.
Khan
,
F.
,
Hossain
,
N.
,
Mim
,
J. J.
,
Rahman
,
S. M.
,
Iqbal
,
M. J.
,
Billah
,
M.
, and
Chowdhury
,
M. A.
,
2024
, “
Advances of Composite Materials in Automobile Applications—A Review
,”
J. Eng. Res.
,
13
(
2
), pp.
1
23
.
11.
Kumar
,
K. C.
,
Kumar
,
B. R.
, and
Rao
,
N. M.
,
2022
, “
Microstructural, Mechanical Characterization, and Fractography of AZ31/SiC Reinforced Composites by Stir Casting Method
,”
Silicon
,
14
(
9
), pp.
5017
5027
.
12.
Mousavi
,
S. F.
,
Sharifi
,
H.
,
Tayebi
,
M.
,
Hamawandi
,
B.
, and
Behnamian
,
Y.
,
2022
, “
Thermal Cycles Behavior and Microstructure of AZ31/SiC Composite Prepared by Stir Casting
,”
Sci. Rep.
,
12
(
1
), p.
15191
.
13.
Veeranjaneyulu
,
I.
,
Chittaranjan Das
,
V.
, and
Karumuri
,
S.
,
2023
, “
Investigation of Mechanical Properties and Microstructure of AZ31-SiC-Graphite Hybrid Nanocomposites Fabricated by Bottom Pouring-Type Stir Casting Machines
,”
Adv. Mater. Sci. Eng.
,
2023
(
1
), p.
3402348
.
14.
Khandelwal
,
A.
,
Mani
,
K.
,
Srivastava
,
N.
,
Gupta
,
R.
, and
Chaudhari
,
G. P.
,
2017
, “
Mechanical Behavior of AZ31/Al2O3 Magnesium Alloy Nanocomposites Prepared Using Ultrasound Assisted Stir Casting
,”
Compos. Part B: Eng.
,
123
, pp.
64
73
.
15.
Dareini
,
M.
,
Jabbari
,
A. H.
, and
Sedighi
,
M.
,
2020
, “
Effect of Nano-sized Al2O3 Reinforcing Particles on Uniaxial and High Cycle Fatigue Behaviors of Hot-Forged AZ31B Magnesium Alloy
,”
Trans. Nonferrous Met. Soc. China
,
30
(
5
), pp.
1249
1266
.
16.
Sankaranarayanan
,
S.
,
Sabat
,
R. K.
,
Jayalakshmi
,
S.
,
Suwas
,
S.
,
Almajid
,
A.
, and
Gupta
,
M.
,
2015
, “
Mg/BN Nanocomposites: Nano-BN Addition for Enhanced Room Temperature Tensile and Compressive Response
,”
J. Compos. Mater.
,
49
(
24
), pp.
3045
3055
.
17.
Kaviti
,
R. V. P.
,
Jeyasimman
,
D.
,
Parande
,
G.
,
Gupta
,
M.
, and
Narayanasamy
,
R.
,
2018
, “
Investigation on Dry Sliding Wear Behavior of Mg/BN Nanocomposites
,”
J. Magn. Alloys
,
6
(
3
), pp.
263
276
.
18.
Banerjee
,
S.
,
Poria
,
S.
,
Sutradhar
,
G.
, and
Sahoo
,
P.
,
2019
, “
Dry Sliding Tribological Behavior of AZ31-WC Nano-composites
,”
J. Magn. Alloys
,
7
(
2
), pp.
315
327
.
19.
Praveenkumar
,
R.
,
Periyasamy
,
P.
,
Mohanavel
,
V.
, and
Chandramohan
,
D.
,
2018
, “
Microstructure and Mechanical Properties of Mg/WC Composites Prepared by Stir Casting Method
,”
Int. J. Mech. Eng. Technol.
,
9
(
10
), pp.
1504
1511
.
20.
Titarmare
,
V.
,
Banerjee
,
S.
, and
Sahoo
,
P.
,
2024
, “
Effect of Sliding Speed and Sliding Distance on Wear Behavior of AZ31-B4C Composite
,”
Phys. Scr.
,
99
(
8
), p.
085016
.
21.
Zhang
,
W.
,
2021
, “
A Review of Tribological Properties for Boron Carbide Ceramics
,”
Prog. Mater. Sci.
,
116
, p.
100718
.
22.
Moheimani
,
S. K.
,
Keshtgar
,
A.
,
Khademzadeh
,
S.
,
Tayebi
,
M.
,
Rajaee
,
A.
, and
Saboori
,
A.
,
2022
, “
Tribological Behavior of AZ31 Magnesium Alloy Reinforced by Bimodal Size B4C After Precipitation Hardening
,”
J. Magn. Alloys
,
10
(
11
), pp.
3267
3280
.
23.
Pitchayyapillai
,
G.
,
Mohamed
,
M. J. S.
,
Dhanraj
,
G.
,
Prince
,
R. M. R.
,
Rajeshwaran
,
M.
, and
Mangrulkar
,
A.
,
2022
, “
Influence of B4C on Mechanical Properties of AZ91 Magnesium Matrix Composites
,”
Mater. Today: Proc.
,
59
, pp.
1438
1441
.
24.
Banerjee
,
S.
,
Poria
,
S.
,
Sutradhar
,
G.
, and
Sahoo
,
P.
,
2021
, “Understanding Fabrication and Properties of Magnesium Matrix Nanocomposites,”
Recent Adv. Layered Mater. Struct.
,
S.
Sahoo
, ed.,
Springer
,
Singapore
, pp.
229
252
.
25.
Monish
,
P.
,
Hari
,
K. K.
, and
Rajkumar
,
K.
,
2023
, “
Manufacturing and Characterisation of Magnesium Composites Reinforced by Nanoparticles: A Review
,”
Mater. Sci. Technol.
,
39
(
15
), pp.
1858
1876
.
26.
Banerjee
,
S.
,
Sahoo
,
P.
, and
Davim
,
J. P.
,
2021
, “
Tribological Characterisation of Magnesium Matrix Nanocomposites: A Review
,”
Adv. Mech. Eng.
,
13
(
4
), p.
16878140211009025
.
27.
Idrisi
,
A. H.
, and
Mourad
,
A. H. I.
,
2019
, “
Conventional Stir Casting Versus Ultrasonic Assisted Stir Casting Process: Mechanical and Physical Characteristics of AMCs
,”
J. Alloys Compd.
,
805
, pp.
502
508
.
28.
Titarmare
,
V.
,
Banerjee
,
S.
, and
Sahoo
,
P.
,
2022
, “
Fabrication and Characterization of AZ31-B4C Composites
,”
Mater. Today: Proc.
,
59
, pp.
153
160
.
29.
Kumar
,
D.
, and
Thakur
,
L.
,
2023
, “
Investigation on Mechanical and Wear Performance of Ultrasonic-Assisted Stir Cast AZ91D/Al2O3 Magnesium Matrix Composites
,”
Met. Mater. Int.
,
29
(
9
), pp.
2767
2781
.
30.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
31.
Banerjee
,
S.
,
Poria
,
S.
,
Sutradhar
,
G.
, and
Sahoo
,
P.
,
2021
, “
Nano-indentation and Corrosion Characteristics of Ultrasonic Vibration Assisted Stir-Cast AZ31–WC–Graphite Nano-composites
,”
Int. J. Metalcast.
,
15
(
3
), pp.
1058
1072
.
32.
Banerjee
,
S.
,
Poria
,
S.
,
Sutradhar
,
G.
, and
Sahoo
,
P.
,
2019
, “
Nanoindentation and Scratch Resistance Characteristics of AZ31–WC Nanocomposites
,”
J. Mol. Eng. Mater.
,
7
(
3–4
), p.
1950007
.
33.
Kumar
,
A.
,
Keerti
,
S.
,
Jain
,
J.
,
Sinha
,
S.
,
Tekumalla
,
S.
, and
Gupta
,
M.
,
2018
, “
Investigations of Wear Response of Pure Mg and Mg-0.4 Ce-Y2O3/ZnO Nanocomposites Using a Single and Repeated Scratch Tests
,”
Tribol. Trans.
,
61
(
5
), pp.
951
959
.
34.
Labib
,
F.
,
Ghasemi
,
H. M.
, and
Mahmudi
,
R.
,
2016
, “
Dry Tribological Behavior of Mg/SiCp Composites at Room and Elevated Temperatures
,”
Wear
,
348
, pp.
69
79
.
35.
Banerjee
,
S.
,
Poria
,
S.
,
Sutradhar
,
G.
, and
Sahoo
,
P.
,
2019
, “
Tribological Behavior of Mg-WC Nano-composites at Elevated Temperature
,”
Mater. Res. Express
,
6
(
8
), p.
0865c6
.
36.
Sunu Surendran
,
K. T.
, and
Gnanavelbabu
,
A.
,
2022
, “
Tribological Behavior of AZ91D/Ultra-high-temperature Ceramic Composites at Room and Elevated Temperatures
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
236
(
9
), pp.
1855
1870
.
37.
Titarmare
,
V.
,
Banerjee
,
S.
, and
Sahoo
,
P.
,
2024
, “
Abrasive Wear Behavior of AZ31−B4C Composites
,”
Tribol. Int.
,
194
, p.
109455
.
38.
Aruna
,
M.
,
Krishnan
,
A. M.
,
Nagarajan
,
N.
,
Prabagaran
,
S.
,
Rathinavelu
,
V.
,
Kavitha
,
N.
,
Parthipan
,
N.
, et al
,
2025
, “
Integration of Magnesium Fluoride and Nano Alumina–Silicon Carbide Actions on Properties of AZ91 Alloy Hybrid Nanocomposites
,”
Int. J. Met.
, pp.
1
11
.
39.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
40.
Gokalp
,
I.
, and
Incesu
,
A.
,
2023
, “
Effect of Ca Addition to the Elevated Temperature Mechanical Properties of AZ Series Magnesium Alloys
,”
Int. J. Met.
,
17
(
2
), pp.
1402
1412
.
41.
An
,
J.
,
Zhang
,
Y. X.
, and
Lv
,
X. X.
,
2018
, “
Tribological Characteristics of Mg–3Al–0.4 Si–0.1 Zn Alloy at Elevated Temperatures of 50–200 C
,”
Tribol. Lett.
,
66
, pp.
1
17
.
42.
An
,
J.
,
Feng
,
J. H.
,
Yan
,
X. H.
, and
Li
,
R. G.
,
2017
, “
Tribological Behavior of Mg97Zn1Y2 Alloy at Elevated Temperatures of 50–200 °C
,”
J. Mater. Eng. Perform.
,
26
(
10
), pp.
4940
4952
.
43.
Mansouri
,
A.
,
Ghasemi
,
H. M.
,
Yazdi
,
R.
,
Mahmudi
,
R.
, and
Sohi
,
M. H.
,
2022
, “
Dry Tribological Behavior of a Cast Mg–Gd–Zr–Ag Alloy at Room and Elevated Temperatures
,”
J. Mater. Res. Technol.
,
18
, pp.
5126
5143
.
You do not currently have access to this content.