Abstract

The present work aims to examine the tribological performance of AA6061 alloy-based surface composite with titanium aluminide particulate reinforcement. Friction stir processing, a well-known surface severe plastic deformation technique, was employed to fabricate the composite via a two-pass approach using distinct pin profiles—taper-threaded in the first pass and square in the second. In accordance with ASTM G99, a pin-on-disc wear test was used to assess the samples' wear behavior under both normal and abrasive wear conditions. The microstructural evolution and post-wear analysis were examined using field emission scanning electron microscopy along with electron backscattered diffraction. The results revealed uniformly distributed reinforcement particles within the friction stir processed (FSPed) zone and demonstrated a reduction in grain size of about 88.23% in the composite compared to the base material. The wear-rate of the composite was lowered by 71% from the base material in the abrasive condition and 63% in the normal wear condition. The hardness analysis revealed a 33% increase in the composite material compared to the unreinforced FSPed sample, highlighting the beneficial impact of the reinforcement on the material's mechanical strength. The composite's yield strength increased from 156 MPa in the base material to 187 MPa in the composite, with only a minimal reduction in ductility (27% for the composite versus 28% for the base). The factors contributing to the improved mechanical and tribological properties, such as uniform particle distribution and grain refinement, are explored in detail through microstructural analysis and post-wear micrographs.

References

1.
Hussain
,
I.
, and
Immanuel
,
R. J.
,
2022
, “Composite Materials and Its Advancements for a Cleaner Engine of Future,”
Advances in Engine Tribology. Energy, Environment, and Sustainability
,
V.
Kumar
,
A. K.
Agarwal
,
A.
Jena
, and
R. K.
Upadhyay
, eds.,
Springer
,
Singapore
, pp.
169
191
.
2.
Hussain
,
I.
, and
Immanuel
,
J.
,
2023
, “
Development and Performance Studies of a Lightweight AA6061/Ti Particulate Surface Composite Through Friction Stir Processing
,” SAE Technical Paper No. 2023-28-1303.
3.
Hussain
,
I.
, and
Immanuel
,
R. J.
,
2024
, “
Development and Characterization of a Novel AA6061 Composite Reinforced With Titanium Aluminide Via Friction Stir Processing
,”
J. Alloys Compd.
,
1006
(
9
), p.
176317
.
4.
Devaraju
,
A.
,
Kumar
,
A.
, and
Kotiveerachari
,
B.
,
2013
, “
Influence of Addition of Gr/Al2O3 With SiC on Wear Properties of Aluminum Alloy 6061-T6 Hybrid Composites Via Friction Stir Processing
,”
Trans. Nonferrous Met. Soc. China
,
23
(
5
), pp.
1275
1280
.
5.
Mehta
,
K. M.
, and
Badheka
,
V. J.
,
2019
, “
Wear Behavior of Boron-Carbide Reinforced Aluminum Surface Composites Fabricated by Friction Stir Processing
,”
Wear
,
426–427
(
12
), pp.
975
980
.
6.
Thangarasu
,
A.
,
Murugan
,
N.
,
Dinaharan
,
I.
, and
Vijay
,
S. J.
,
2015
, “
Synthesis and Characterization of Titanium Carbide Particulate Reinforced AA6082 Aluminum Alloy Composites Via Friction Stir Processing
,”
Arch. Civ. Mech. Eng.
,
15
(
2
), pp.
324
334
.
7.
Aruri
,
D.
,
Adepu
,
K.
,
Adepu
,
K.
, and
Bazavada
,
K.
,
2013
, “
Wear and Mechanical Properties of 6061-T6 Aluminum Alloy Surface Hybrid Composites [(SiC + Gr) and (SiC + Al2O3)] Fabricated by Friction Stir Processing
,”
J. Mater. Res. Technol.
,
2
(
4
), pp.
362
369
.
8.
Thakur
,
S. K.
, and
Gupta
,
M.
,
2007
, “
Improving Mechanical Performance of Al by Using Ti as Reinforcement
,”
Composites, Part A
,
38
(
3
), pp.
1010
1018
.
9.
Yadav
,
M. K.
,
Siddiquee
,
A. N.
, and
Khan
,
Z. A.
,
2018
, “
Fabrication of Promising Material ‘Titanium Aluminide’: Methods and Issues (A Status Report)
,”
Mater. Res. Express
,
5
(
11
), p.
116504
.
10.
Gangil
,
N.
,
Siddiquee
,
A. N.
, and
Maheshwari
,
S.
,
2017
, “
Aluminum Based In-Situ Composite Fabrication Through Friction Stir Processing: A Review
,”
J. Alloys Compd.
,
715
(
8
), pp.
91
104
.
11.
Hussain
,
I.
, and
Immanuel
,
R. J.
,
2022
, “
High Energy Ball Milling—An Advanced Processing Route for Effective Development of Titanium Aluminide Intermetallic Alloy Through Mechanical Alloying
,”
Met. Powder Rep.
,
77
(
4
).
12.
Chen
,
W.
,
Liu
,
Y.
,
Yang
,
C.
,
Zhu
,
D.
, and
Li
,
Y.
,
2014
, “
(SiC + Ti)/7075Al Hybrid Composites With High Strength and Large Plasticity Fabricated by Squeeze Casting
,”
Mater. Sci. Eng. A
,
609
(
7
), pp.
250
254
.
13.
El-sabbagh
,
A. M.
,
Soliman
,
M.
,
Taha
,
M. A.
, and
Palkowski
,
H.
,
2013
, “
Effect of Rolling and Heat Treatment on Tensile Behaviour of Wrought Al-SiCp Composites Prepared by Stir-Casting
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1669
1681
.
14.
Aynalem
,
G. F.
,
2020
, “
Processing Methods and Mechanical Properties of Aluminum
,”
Adv. Mater. Sci. Eng.
,
2020
(
9
), p.
3765791
.
15.
Zhang
,
M.
,
Paidar
,
M.
,
Ojo
,
O. O.
,
Mehrez
,
S.
,
Narayanasamy
,
S.
,
Zain
,
A. M.
, and
Mohanavel
,
V.
,
2022
, “
Impact of Multiple FSP Passes on Structure, Mechanical, Tribological and Corrosion Behaviors of AA6061/316 Stainless-Steel Reinforced Al Matrix Composites
,”
Surf. Coat. Technol.
,
447
(
8
), p.
128801
.
16.
Elangovan
,
K.
, and
Balasubramanian
,
V.
,
2008
, “
Influences of Tool Pin Profile and Tool Shoulder Diameter on the Formation of Friction Stir Processing Zone in AA6061 Aluminum Alloy
,”
Mater. Des.
,
29
(
2
), pp.
362
373
.
17.
Bharti
,
S.
,
Ghetiya
,
N. D.
, and
Patel
,
K. M.
,
2021
, “
A Review on Manufacturing the Surface Composites by Friction Stir Processing
,”
Mater. Manuf. Processes
,
36
(
2
), pp.
135
170
.
18.
Sharma
,
V.
,
Gupta
,
Y.
,
Kumar
,
B. V.
,
Prakash
,
U.
,
Sharma
,
V.
,
Gupta
,
Y.
,
Kumar
,
B. V.
, and
Prakash
,
U.
,
2015
, “
Friction Stir Processing Strategies for Uniform Distribution of Reinforcement in a Surface Composite
,”
Mater. Manuf. Processes
,
31
(
10
), pp.
1384
1392
.
19.
Mehdi
,
H.
,
Mishra
,
R. S.
, and
Mishra
,
R. S.
,
2022
, “
Consequence of Reinforced SiC Particles on Microstructural and Mechanical Properties of AA6061 Surface Composites by Multi-pass FSP Surface Composites by Multi-pass FSP
,”
J. Adhes. Sci. Technol.
,
36
(
12
), pp.
1279
1298
.
20.
Hashemi
,
R.
, and
Hussain
,
G.
,
2015
, “
Wear Performance of Al/TiN Dispersion Strengthened Surface Composite Produced Through Friction Stir Process: A Comparison of Tool Geometries and Number of Passes
,”
Wear
,
324–325
(
2
), pp.
45
54
.
21.
Barati
,
M.
,
Abbasi
,
M.
, and
Abedini
,
M.
,
2019
, “
The Effects of Friction Stir Processing and Friction Stir Vibration Processing on Mechanical, Wear and Corrosion Characteristics of Al6061/SiO2 Surface Composite
,”
J. Manuf. Processes
,
45
(
8
), pp.
491
497
.
22.
Moustafa
,
E. B.
,
Abushanab
,
W. S.
,
Melaibari
,
A.
,
Yakovtseva
,
O.
, and
Mosleh
,
A. O.
,
2021
, “
The Effectiveness of Incorporating Hybrid Reinforcement Nanoparticles in the Enhancement of the Tribological Behavior of Aluminum Metal Matrix Composites
,”
JOM
,
73
(
12
), pp.
4338
4348
.
23.
Zhen
,
J.
,
Li
,
F.
,
Zhu
,
S.
,
Ma
,
J.
,
Qiao
,
Z.
,
Liu
,
W.
, and
Yang
,
J.
,
2014
, “
Friction and Wear Behavior of Nickel-Alloy-Based High Temperature Self-Lubricating Composites Against Si3N4 and Inconel 718
,”
Tribol. Int.
,
75
(
3
), pp.
1
9
.
24.
Shojaeefard
,
M. H.
, and
Akbari
,
M.
,
2016
, “
Effect of Tool Pin Profile on Distribution of Reinforcement Particles During Friction Stir Processing of B4C/Aluminum Composites
,”
J. Mater. Des. Appl.
,
232
(
8
), pp.
637
651
.
25.
Sharma
,
A.
,
Sharma
,
V. M.
,
Sahoo
,
B.
,
Pal
,
S. K.
, and
Paul
,
J.
,
2019
, “
Effect of Multiple Micro Channel Reinforcement Filling Strategy on Al6061-Graphene Nanocomposite Fabricated Through Friction Stir Processing
,”
J. Manuf. Processes
,
37
(
11
), pp.
53
70
.
26.
Sharma
,
A.
,
Fujii
,
H.
, and
Paul
,
J.
,
2020
, “
Influence of Reinforcement Incorporation Approach on Mechanical and Tribological Properties of AA6061-CNT Nanocomposite Fabricated Via FSP
,”
J. Manuf. Processes
,
59
(
8
), pp.
604
620
.
27.
Balakrishnan
,
M.
,
Dinaharan
,
I.
,
Palanivel
,
R.
, and
Sathiskumar
,
R.
,
2019
, “
In Fluence of Friction Stir Processing on Microstructure and Tensile Behavior of AA6061/Al3Zr Cast Aluminum Matrix Composites
,”
J. Manuf. Processes
,
38
(
1
), pp.
148
157
.
28.
Ma
,
S. M.
,
Zhang
,
P.
,
Ji
,
G.
,
Chen
,
Z.
,
Sun
,
G. A.
,
Zhong
,
S. Y.
,
Ji
,
V.
, and
Wang
,
H. W.
,
2014
, “
Microstructure and Mechanical Properties of Friction Stir Processed Al-Mg-Si Alloys Dispersion-Strengthened by Nanosized TiB2 Particles
”,
J. Alloys Compd.
,
616
(
12
), pp.
128
136
.
29.
Yu
,
X.
,
Wu
,
H.
,
Guo
,
L.
,
Duan
,
L.
, and
Xiu
,
W.
,
2020
, “
Investigating on Microstructural and Mechanical Properties of Al6061/Nano-SiC Composites Fabricated Via Friction Stir Processing
,”
Mater. Res. Express
,
7
(
2
), p.
026554
.
30.
Teja
,
P. J.
,
Jain
,
R.
,
Shubham
, and
Bandyopadhyay
,
K.
,
2024
, “
SPIF of Micro-FSWed Dissimilar AlMgSi Alloy: Formability Analysis
,”
Mater. Manuf. Processes
,
39
(
5
), pp.
597
609
.
31.
Ansari
,
A. J.
, and
Anas
,
M.
,
2023
, “
Effect of Volume Percentage of Reinforcement on the Microstructure and Mechanical Properties of an Al6061-T6/SiC Surface Composite Fabricated Through Friction Stir Processing
,”
Adv. Sci. Technol. Res. J.
,
17
(
2
), pp.
247
257
.
32.
Chawla
,
N.
, and
Chawla
,
K. K.
,
2013
,
Metal Matrix Composites
,
Springer
,
New York, Heidelberg, Dordrecht, London
.
33.
Arora
,
H. S.
,
Singh
,
H.
, and
Dhindaw
,
B. K.
,
2013
, “
Wear Behaviour of a Mg Alloy Subjected to Friction Stir Processing
,”
Wear
,
303
(
1–2
), pp.
65
77
.
34.
Dinaharan
,
I.
,
Ashok Kumar
,
G.
,
Vijay
,
S. J.
, and
Murugan
,
N.
,
2014
, “
Development of Al3 Ti and Al3 Zr Intermetallic Particulate Reinforced Aluminum Alloy AA6061 In Situ Composites Using Friction Stir Processing
,”
J. Mater.
,
63
(
11
), pp.
213
222
.
35.
Immanuel
,
R. J.
, and
Panigrahi
,
S. K.
,
2016
, “
Transformation of Cast A356 Ingots to Wrought Sheets With Enhanced Mechanical and Tribological Properties by Different Thermo-Mechanical Processing Routes
,”
Mater. Des.
,
101
(
7
), pp.
44
55
.
36.
Singh
,
S. K.
,
Immanuel
,
R. J.
,
Babu
,
S.
,
Panigrahi
,
S. K.
, and
Janaki Ram
,
G. D.
,
2016
, “
Influence of Multi-pass Friction Stir Processing on Wear Behaviour and Machinability of an Al-Si Hypoeutectic A356 Alloy
,”
J. Mater. Process. Technol.
,
236
(
10
), pp.
252
262
.
You do not currently have access to this content.