Abstract

To investigate the impact of the length-to-diameter ratio (LDR) on the lubrication performance of misaligned journal stern bearings, a lubrication model was developed and solved using numerical methods, with experimental validation. Results show that, unlike aligned bearings, the lubrication performance of misaligned bearings initially improves as the LDR increases, reaches an optimal state, and then declines. The LDR corresponding to this optimal state is defined as the optimal length-to-diameter ratio (LDRopt). Further analysis indicates that LDRopt decreases with increasing dimensionless load, misalignment angle, and bearing diameter. A mathematical relationship between LDRopt and these parameters was established using nonlinear fitting. Validation through case studies confirmed its accuracy, demonstrating its high practical value.

References

1.
Yang
,
T.
,
Zhu
,
H.
,
Fan
,
S.
,
Wu
,
J.
,
Yuan
,
J.
, and
Zheng
,
L.
,
2023
, “
Research on Lubrication Characteristics of Ship Stern Bearings Considering Bearing Installation Errors
,”
Lubricants
,
11
(
11
), p.
478
.
2.
Zhang
,
S. D.
,
Long
,
Z. L.
, and
Yang
,
X. Y.
,
2020
, “
Reaction Force of Ship Stern Bearing in Hull Large Deformation Based on Stochastic Theory
,”
Int. J. Nav. Archit. Ocean Eng.
,
12
, pp.
723
732
.
3.
Khalyavkin
,
A.
,
Makeev
,
S.
,
Loshadkin
,
D. V.
,
Mamontov
,
V.
,
Ali
,
S.
,
Shatskov
,
D.
, and
Auslender
,
A. Y.
,
2020
, “
Evaluation of Influence of Elastic Properties of Slide Bearing of Ship Stern Gear on Stiffness Coefficient
,”
Vestn. Astrakhan State Tech. Univ. Ser. Mar. Eng. Technol.
,
1
(
1
), pp.
83
93
.
4.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
,
1989
, “
Effect of Cavitation on the Performance of a Grooved Misaligned Journal Bearing
,”
Wear
,
134
(
2
), pp.
377
397
.
5.
Monmousseau
,
P.
,
Fillon
,
M.
, and
Frêne
,
J.
,
1998
, “
Transient Thermoelastohydrodynamic Study of Tilting-Pad Journal Bearings Under Dynamic Loading
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
405
409
.
6.
Ouyang
,
W.
,
Cheng
,
Q.
,
Jin
,
Y.
,
Liu
,
Q.
,
Wang
,
B.
, and
Wang
,
L.
,
2021
, “
Lubrication Performance Distribution of Large Aspect Ratio Water-Lubricated Bearings Considering Deformation and Shaft Bending
,”
Tribol. Trans.
,
64
(
4
), pp.
730
743
.
7.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
,
2015
, “
On the Characteristics of Misaligned Journal Bearings
,”
Lubricants
,
3
(
1
), pp.
27
53
.
8.
Xu
,
G.
,
Zhou
,
J.
,
Geng
,
H.
,
Lu
,
M.
,
Yang
,
L.
, and
Yu
,
L.
,
2015
, “
Research on the Static and Dynamic Characteristics of Misaligned Journal Bearings Considering the Turbulent and Thermohydrodynamic Effects
,”
ASME J. Tribol.
,
137
(
2
), p.
024504
.
9.
Wodtke
,
M.
, and
Litwin
,
W.
,
2021
, “
Water-Lubricated Stern Tube Bearing—Experimental and Theoretical Investigations of Thermal Effects
,”
Tribol. Int.
,
153
, p.
106608
.
10.
Lv
,
F.
,
Zou
,
D.
,
Ta
,
N.
, and
Rao
,
Z. S.
,
2019
, “
Improvement of Lubrication Performance of Water-Lubricated Polymer Bearing Via Enlarged Axial End Bearing Diameter
,”
Ind. Lubr. Tribol.
,
71
(
4
), pp.
564
572
.
11.
Hirani
,
H.
, and
Suh
,
N. P.
,
2005
, “
Journal Bearing Design Using Multiobjective Genetic Algorithm and Axiomatic Design Approaches
,”
Tribol. Int.
,
38
(
5
), pp.
481
491
.
12.
Gong
,
J.
,
Jin
,
Y.
,
Liu
,
Z.
,
Jiang
,
H.
, and
Xiao
,
M.
,
2019
, “
Study on Influencing Factors of Lubrication Performance of Water-Lubricated Micro-groove Bearing
,”
Tribol. Int.
,
129
, pp.
390
397
.
13.
Xie
,
Z.
,
Zhang
,
Y.
,
Zhou
,
J.
, and
Zhu
,
W.
,
2021
, “
Theoretical and Experimental Research on the Micro-interface Lubrication Regime of Water-Lubricated Bearing
,”
Mech. Syst. Signal Process.
,
151
, p.
107422
.
14.
McKee
,
S. A.
, and
McKee
,
T. R.
,
1929
, “
Friction of Journal Bearings as Influenced by Clearance and Length
,”
Trans. ASME
,
51
(
2
), pp.
161
166
.
15.
Schuller
,
F. T.
,
1977
, “
Stability Experiments With Hydrodynamic Tilted-Lobe Journal Bearings of Various Numbers of Lobes and Length-to-Diameter Ratios
,”
ASLE Trans.
,
20
(
4
), pp.
271
281
.
16.
Cao
,
Y. Z.
,
Liang
,
P.
,
Guo
,
F.
,
Zhang
,
X. H.
,
Wang
,
C.
, and
Jiang
,
F. L.
,
2021
, “
Effect of Length-to-Diameter Ratio on the Lubrication Performance of Heavy-Load Water-Lubricated Bearings
,”
Lubr. Eng.
,
46
(
11
), pp.
60
67
.
17.
Jamali
,
H. U.
,
Mohammed
,
M. N.
,
Aljibori
,
H. S. S.
,
Jweeg
,
M. J.
, and
Abdullah
,
O. I.
,
2023
, “
A Novel Optimization Strategy of Bearing Geometry With a Length-to-Diameter Ratio of 1.25 Under Severe Operating Conditions Using Taguchi Method
,”
Designs
,
7
(
6
), p.
121
.
18.
Zhao
,
Z.
, and
Zhang
,
R.
,
2020
, “
Theoretical and Experimental Analysis of a Water-Lubricated Rubber Journal Bearing With a Large Aspect Ratio
,”
Ind. Lubr. Tribol.
,
72
(
6
), pp.
797
803
.
19.
Hashimoto
,
H.
,
Wada
,
S.
, and
Ito
,
J.
,
1987
, “
An Application of Short Bearing Theory to Dynamic Characteristic Problems of Turbulent Journal Bearings
,”
ASME J. Tribol.
,
109
(
2
), pp.
307
314
.
20.
Daskivich
,
R. A.
,
1984
, “
Bearing Length Ratio Applied to the Measurement of Engine Cylinder-Bore Wear
,”
Precis. Eng.
,
6
(
1
), pp.
31
33
.
21.
Lv
,
F.
,
Jiao
,
C.
, and
Xu
,
J.
,
2023
, “
Theoretical and Experimental Investigation on Effective Length-to-Diameter Ratio of Misaligned Water-Lubricated Bearings
,”
Tribol. Int.
,
187
, p.
108712
.
22.
Wang
,
Q.
,
Shi
,
F.
, and
Lee
,
S. C.
,
1997
, “
A Mixed-Lubrication Study of Journal Bearing Conformal Contacts
,”
ASME J. Tribol.
,
119
(
3
), pp.
456
461
.
23.
Dowson
,
D.
,
1962
, “
A Generalized Reynolds Equation for Fluid-Film Lubrication
,”
Int. J. Mech. Sci.
,
4
(
2
), pp.
159
170
.
24.
Bayada
,
G.
, and
Chambat
,
M.
,
1986
, “
The Transition Between the Stokes Equations and the Reynolds Equation: A Mathematical Proof
,”
Appl. Math. Optim.
,
14
(
1
), pp.
73
93
.
25.
Zhou
,
Z.
,
Zhou
,
X.
,
Huang
,
Q.
,
Liu
,
X.
,
Wang
,
L.
, and
Xing
,
S.
,
2024
, “
Impact of Oil-Water Emulsions on Lubrication Performance of Ship Stern Bearings
,”
Sci. Rep.
,
14
(
1
), p.
31478
.
26.
Nicoletti
,
R.
,
2013
, “
Comparison Between a Meshless Method and the Finite Difference Method for Solving the Reynolds Equation in Finite Bearings
,”
ASME J. Tribol.
,
135
(
4
), p.
044501
.
27.
He
,
Q.
,
Hu
,
F.
,
Huang
,
W.
,
Hu
,
Y.
,
Cong
,
G.
, and
Zhang
,
Y.
,
2024
, “
Modified Finite Difference Methods for Reynolds Equation With Film Thickness Discontinuity
,”
ASME J. Tribol.
,
146
(
2
), p.
024101
.
You do not currently have access to this content.