Abstract

Wear-induced degradation in linear motion ball guides (LMBGs) can significantly impact the precision of computer numerical control machine tools. The wear coefficient is a critical parameter determining the wear-rate. However, limited research has been devoted to its experimental investigation in LMBGs. This study proposes a novel wear prediction method for LMBGs that dynamically updates the wear coefficient based on varying contact conditions. To accurately determine the wear coefficient under specific contact parameters, a new experimental approach is introduced, enabling precise measurement of LMBG wear coefficients. Building on these measurements, universal kriging is employed to establish a continuous mapping between the wear coefficient and contact conditions while also providing an uncertainty estimation. Experimental validation confirms the effectiveness of the proposed wear prediction method, which accounts for the variation of the wear coefficient with contact parameters. The constructed wear coefficient map serves as a valuable reference for selecting appropriate wear coefficients in LMBGs. Moreover, by integrating universal kriging, the proposed wear prediction method enables accurate estimation of the effective useful life interval, providing a reliable reference for optimizing the maintenance strategy of LMBGs.

References

1.
Sun
,
W.
,
Kong
,
X. X.
,
Wang
,
B.
, and
Li
,
X.
,
2015
, “
Statics Modeling and Analysis of Linear Rolling Guideway Considering Rolling Balls Contact
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
229
(
1
), pp.
168
179
.
2.
Ohta
,
H.
, and
Tanaka
,
K.
,
2010
, “
Vertical Stiffnesses of Preloaded Linear Guideway Type Ball Bearings Incorporating the Flexibility of the Carriage and Rail
,”
ASME J. Tribol.
,
132
(
1
), p.
011102
.
3.
Jiang
,
S. Y.
,
Wang
,
Y.
, and
Wang
,
Y. M.
,
2019
, “
Modeling of Static Stiffness for Linear Motion Roller Guide
,”
ASME J. Tribol.
,
141
(
11
), p.
111102
.
4.
Tong
,
V. C.
,
Khim
,
G.
,
Hong
,
S. W.
, and
Park
,
C. H.
,
2019
, “
Construction and Validation of a Theoretical Model of the Stiffness Matrix of a Linear Ball Guide With Consideration of Carriage Flexibility
,”
Mech. Mach. Theory
,
140
, pp.
123
143
.
5.
Majda
,
P.
,
2012
, “
Modeling of Geometric Errors of Linear Guideway and Their Influence on Joint Kinematic Error in Machine Tools
,”
Precis. Eng.
,
36
(
3
), pp.
369
378
.
6.
Khim
,
G.
,
Park
,
C. H.
,
Shamoto
,
E.
, and
Kim
,
S. W.
,
2011
, “
Prediction and Compensation of Motion Accuracy in a Linear Motion Bearing Table
,”
Precis. Eng.
,
35
(
3
), pp.
393
399
.
7.
Al-Bender
,
F.
, and
Symens
,
W.
,
2005
, “
Characterization of Frictional Hysteresis in Ball-Bearing Guideways
,”
Wear
,
258
(
11–12
), pp.
1630
1642
.
8.
Miura
,
T.
,
Matsubara
,
A.
,
Yamaji
,
I.
, and
Hoshide
,
K.
,
2018
, “
Measurement and Analysis of Friction Fluctuations in Linear Guideways
,”
CIRP Ann.
,
67
(
1
), pp.
393
396
.
9.
Wang
,
W.
,
Yimin
,
Z.
,
Changyou
,
L.
,
Hao
,
W.
, and
Yanxun
,
Z.
,
2017
, “
Effects of Wear on Dynamic Characteristics and Stability of Linear Guides
,”
Meccanica
,
52
(
11–12
), pp.
2899
2913
.
10.
Yu
,
H.
,
Ran
,
Y.
,
Zhang
,
G. B.
, and
Ying
,
G. Q.
,
2021
, “
A Dynamic Time-Varying Reliability Model for Linear Guides Considering Wear Degradation
,”
Nonlinear Dyn.
,
103
(
1
), pp.
699
714
.
11.
Tao
,
W. J.
,
Zhong
,
Y.
,
Feng
,
H. T.
, and
Wang
,
Y. L.
,
2013
, “
Model for Wear Prediction of Roller Linear Guides
,”
Wear
,
305
(
1–2
), pp.
260
266
.
12.
Zou
,
H. T.
, and
Wang
,
B. L.
,
2015
, “
Investigation of the Contact Stiffness Variation of Linear Rolling Guides Due to the Effects of Friction and Wear During Operation
,”
Tribol. Int.
,
92
, pp.
472
484
.
13.
Zhou
,
C. G.
,
Ren
,
S. H.
,
Feng
,
H. T.
,
Shen
,
J. W.
,
Zhang
,
Y. S.
, and
Chen
,
Z. T.
,
2021
, “
A New Model for the Preload Degradation of Linear Rolling Guide
,”
Wear
,
482–483
, p.
203963
.
14.
Ramalho
,
A.
,
Esteves
,
M.
, and
Marta
,
P.
,
2013
, “
Friction and Wear Behaviour of Rolling–Sliding Steel Contacts
,”
Wear
,
302
(
1–2
), pp.
1468
1480
.
15.
Rabinowicz
,
E.
,
1981
, “
The Wear Coefficient—Magnitude, Scatter, Uses
,”
J. Lubr. Technol.
,
103
(
2
), pp.
188
193
.
16.
Demiri
,
S.
,
Boedo
,
S.
, and
Holsen
,
L. S.
,
2014
, “
Wear Characteristics of Large Aspect Ratio Silicon Microbearing Systems
,”
Wear
,
312
(
1–2
), pp.
58
69
.
17.
Zhao
,
J. J.
,
Lin
,
M. X.
,
Song
,
X. C.
, and
Wei
,
N.
,
2021
, “
A Modeling Method for Predicting the Precision Loss of the Preload Double-Nut Ball Screw Induced by Raceway Wear Based on Fractal Theory
,”
Wear
,
486–487
, p.
204065
.
18.
Liu
,
J. L.
,
Ma
,
C.
, and
Wang
,
S. L.
,
2020
, “
Precision Loss Modeling Method of Ball Screw Pair
,”
Mech. Syst. Signal Process.
,
135
(
1
), p.
106397
.
19.
Cheng
,
Q.
,
Qi
,
B. B.
,
Liu
,
Z. F.
,
Zhang
,
C. X.
, and
Xue
,
D. Y.
,
2019
, “
An Accuracy Degradation Analysis of Ball Screw Mechanism Considering Time-Varying Motion and Loading Working Conditions
,”
Mech. Mach. Theory
,
134
, pp.
1
23
.
20.
Lim
,
S. C.
, and
Lim
,
C. Y. H.
,
2001
, “
Effective Use of Coated Tools—The Wear-Map Approach
,”
Surf. Coat. Technol.
,
139
(
2–3
), pp.
127
134
.
21.
Lim
,
S. C.
,
2002
, “
The Relevance of Wear-Mechanism Maps to Mild-Oxidational Wear
,”
Tribol. Int.
,
35
(
11
), pp.
717
723
.
22.
Jendel
,
T.
,
2002
, “
Prediction of Wheel Profile Wear—Comparisons With Field Measurements
,”
Wear
,
253
(
1–2
), pp.
89
99
.
23.
Lewis
,
R.
, and
Olofsson
,
U.
,
2004
, “
Mapping Rail Wear Regimes and Transitions
,”
Wear
,
257
(
7–8
), pp.
721
729
.
24.
Zhu
,
Y.
,
Sundh
,
J.
, and
Olofsson
,
U.
,
2013
, “
A Tribological View of Wheel-Rail Wear Maps
,”
Int. J. Rail. Technol.
,
2
(
3
), pp.
79
91
.
25.
Cremona
,
M. A.
,
Liu
,
B. B.
,
Hu
,
Y.
,
Bruni
,
S.
, and
Lewis
,
R.
,
2016
, “
Predicting Railway Wheel Wear Under Uncertainty of Wear Coefficient, Using Universal Kriging
,”
Reliab. Eng. Syst. Safe.
,
154
, pp.
49
59
.
26.
Gia Pham
,
T.
,
Kappas
,
M.
,
Van Huynh
,
C.
, and
Hoang Khanh Nguyen
,
L.
,
2019
, “
Application of Ordinary Kriging and Regression Kriging Method for Soil Properties Mapping in Hilly Region of Central Vietnam
,”
ISPRS Int. J. Geo-Inf.
,
8
(
3
), p.
147
.
27.
Volchko
,
Y.
,
Norrman
,
J.
,
Rosèn
,
L.
, and
Norberg
,
T.
,
2014
, “
A Minimum Data Set for Evaluating the Ecological Soil Functions in Remediation Projects
,”
J. Soil. Sediments
,
14
(
11
), pp.
1850
1860
.
28.
Goovaerts
,
P.
,
2000
, “
Geostatistical Approaches for Incorporating Elevation Into the Spatial Interpolation of Rainfall
,”
J. Hydrol.
,
228
(
1–2
), pp.
113
129
.
29.
Huang
,
S.
,
Zhao
,
K.
,
Zheng
,
Z. Q.
,
Ji
,
W. Q.
,
Li
,
T. Y.
, and
Liao
,
X. F.
,
2021
, “
An Optimized Fingerprinting-Based Indoor Positioning With Kalman Filter and Universal Kriging for 5G Internet of Things
,”
Wireless Commun. Mobile Comput.
,
2021
(
1
), pp.
1
10
.
30.
Nori-Sarma
,
A.
,
Thimmulappa
,
R. K.
,
Venkataramana
,
G. V.
,
Fauzie
,
A. K.
,
Dey
,
S. K.
,
Venkareddy
,
L. K.
,
Berman
,
J. D.
, et al
,
2020
, “
Low-Cost NO2 Monitoring and Predictions of Urban Exposure Using Universal Kriging and Land-Use Regression Modelling in Mysore, India
,”
Atmos. Environ.
,
226
, p.
117395
.
31.
Sun
,
Y. T.
,
Li
,
Y. C.
,
Zhang
,
Q.
,
Qin
,
X. R.
, and
Chen
,
K. G.
,
2023
, “
Wear Analysis and Simulation of Small Module Gear Based on Archard Model
,”
Eng. Fail. Anal.
,
144
, p.
106990
.
32.
Harris
,
T. A.
, and
Crecelius
,
W. J.
,
1986
, “
Rolling Bearing Analysis
,”
ASME J. Tribol.
,
108
(
1
), pp.
149
150
.
33.
Greenwood
,
J. A.
,
1997
, “
Analysis of Elliptical Hertzian Contacts
,”
Tribol. Int.
,
30
(
3
), pp.
235
237
.
34.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
35.
Wang
,
X. Y.
,
Feng
,
H. T.
,
Zhou
,
C. G.
, and
Ye
,
K.
,
2020
, “
A Thermal Model for Real-Time Temperature Forecast of Rolling Linear Guide Considering Loading Working Conditions
,”
Int. J. Adv. Manuf. Technol.
,
109
(
7
), pp.
2249
2271
.
36.
Wei
,
C. C.
, and
Lin
,
J. F.
,
2003
, “
Kinematic Analysis of The Ball Screw Mechanism Considering Variable Contact Angles and Elastic Deformations
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
717
733
.
37.
Khan
,
M.
,
Almazah
,
M. M. A.
,
Ellahi
,
A.
,
Niaz
,
R.
,
Al-Rezamif
,
A. Y.
, and
Zaman
,
B.
,
2023
, “
Spatial Interpolation of Water Quality Index Based on Ordinary Kriging and Universal Kriging
,”
Geomat. Nat. Haz. Risk
,
14
(
1
), p.
2190853
.
38.
Wikle
,
C. K.
,
Zammit-Mangion
,
A.
, and
Cressie
,
N.
,
2019
,
Spatio-Temporal Statistics With R
,
Chapman and Hall, CRC
,
Boca Raton, FL
.
39.
Metha
,
B.
,
Trenti
,
M.
, and
Chu
,
T. J.
,
2021
, “
A Geostatistical Analysis of Multiscale Metallicity Variations in Galaxies—I. Introduction and Comparison of High-Resolution Metallicity Maps to an Analytical Metal Transport Model
,”
Mon. Not. R. Astron. Soc.
,
508
(
1
), pp.
489
507
.
40.
Cressie
,
N.
,
1993
,
Statistics for Spatial Data, Revised Edition
,
John Wiley and Sons
,
New York
.
You do not currently have access to this content.