Abstract

The study focused on developing Al5052 composites reinforced with cenosphere particles to improve their wear resistance. The wear-rates of the test materials were measured using a pin-on-disc apparatus at room temperature, utilizing a dataset comprising 27 experimental observations. The results demonstrate that increasing the cenosphere reinforcement content effectively reduced the wear-rates. The microhardness improved from 68.5 Hv to 78.75 Hv by adding 4 wt% cenosphere particles to the Al5052 alloy. Four machine learning models—decision tree (DT), random forest (RF), support vector regression (SVR), and k-nearest neighbors (KNN)—were employed for wear-rate prediction. While the DT model achieved the highest test accuracy (R2 = 0.95), it exhibited signs of overfitting as indicated by its R2 of 1.0 on the training data. In contrast, the RF (R2 = 0.94) model provided a better balance between accuracy and generalizability, making it a more reliable choice for predictive analysis. An analysis of the importance of features was carried out to evaluate the contribution of input parameters to predict wear-rate. The results revealed that the reinforcement wt% had the most significant impact on wear-rate prediction. These findings suggest that data-driven machine learning approaches hold potential as powerful tools in tribological studies, paving the way for the emergence of tribo-informatics.

References

1.
Ruiz-Andrés
,
M.
,
Conde
,
A.
,
De Damborenea
,
J.
, and
García
,
I.
,
2018
, “Wear Behavior of Aluminum Alloys at Slow Sliding Speeds,”
Encyclopedia of Aluminum and Its Alloys, Two-Volume Set (Print)
, 1st ed.,
G. E.
Totten
,
M.
Tiryakioglu
, and
O.
Kessler
, eds.,
CRC Press
,
Boca Raton
, FL, pp.
2778
2788
.
2.
Campestrini
,
P.
,
Van Westing
,
E.
, and
De Wit
,
J.
,
2001
, “
Influence of Surface Preparation on Performance of Chromate Conversion Coatings on Alclad 2024 Aluminum Alloy: Part II: EIS Investigation
,”
Electrochim. Acta
,
46
(
17
), pp.
2631
2647
.
3.
Reis
,
F. d.
,
De Melo
,
H.
, and
Costa
,
I.
,
2006
, “
EIS Investigation on Al 5052 Alloy Surface Preparation for Self-Assembling Monolayer
,”
Electrochim. Acta
,
51
(
8–9
), pp.
1780
1788
.
4.
Parikh
,
V.
,
Badgujar
,
A.
, and
Ghetiya
,
N.
,
2019
, “
Joining of Metal Matrix Composites Using Friction Stir Welding: A Review
,”
Mater. Manuf. Processes
,
34
(
2
), pp.
123
146
.
5.
Rana
,
S.
, and
Fangueiro
,
R.
,
2016
, “Advanced Composites in Aerospace Engineering,”
Advanced Composite Materials for Aerospace Engineering
,
S.
Rana
, and
R.
Fangueiro
, eds.,
Elsevier
,
New York
, pp.
1
15
.
6.
Khalid
,
M. Y.
,
Umer
,
R.
, and
Khan
,
K. A.
,
2023
, “
Review of Recent Trends and Developments in Aluminum 7075 Alloys and Metal Matrix Composites (MMCs) for Aircraft Applications
,”
Results Eng.
,
20
, p.
101372
.
7.
Singh
,
H.
,
Raina
,
A.
, and
Irfan Ul Haq
,
M.
,
2018
, “
Effect of TiB2 on Mechanical and Tribological Properties of Aluminum Alloys—A Review
,”
Mater. Today: Proc.
,
5
(
9
), pp.
17982
17988
.
8.
Elleuch
,
K.
,
Mezlini
,
S.
,
Guermazi
,
N.
, and
Kapsa
,
P.
,
2006
, “
Abrasive Wear of Aluminum Alloys Rubbed Against Sand
,”
Wear
,
261
(
11–12
), pp.
1316
1321
.
9.
Sheikh
,
K. A.
,
Mir
,
F. A.
,
Maqbool
,
A.
, and
Qureshi
,
T.
,
2024
, “
Influence of Cenosphere Reinforcement on Microstructure, Microhardness, and Corrosion Behavior of Al5052 Alloy Matrix Composite Produced by Compo Casting Method
,”
Phys. Scr.
,
99
(
8
), p.
0859a0857
.
10.
Farooq
,
S. A.
,
Mukhtar
,
S. H.
,
Raina
,
A.
,
Haq
,
M. I. U.
,
Siddiqui
,
M. I. H.
,
Naveed
,
N.
, and
Dobrota
,
D.
,
2024
, “
Effect of TiB2 on the Mechanical and Tribological Properties of Marine Grade Aluminum Alloy 5052: An Experimental Investigation
,”
J. Mater. Res. Technol.
,
29
, pp.
3749
3758
.
11.
Dolatkhah
,
A.
,
Golbabaei
,
P.
,
Givi
,
M. B.
, and
Molaiekiya
,
F.
,
2012
, “
Investigating Effects of Process Parameters on Microstructural and Mechanical Properties of Al5052/SiC Metal Matrix Composite Fabricated via Friction Stir Processing
,”
Mater. Des.
,
37
, pp.
458
464
.
12.
Nabi
,
S.
,
Rathee
,
S.
, and
Srivastava
,
M.
,
2024
, “
Friction and Wear Analysis of Al-5052/NiTi Surface Composites Fabricated via Friction Stir Processing
,”
Tribol. Int.
,
191
, p.
109179
.
13.
Hosking
,
F.
,
Portillo
,
F. F.
,
Wunderlin
,
R.
, and
Mehrabian
,
R.
,
1982
, “
Composites of Aluminum Alloys: Fabrication and Wear Behaviour
,”
J. Mater. Sci.
,
17
(
2
), pp.
477
498
.
14.
Liang
,
Y.
,
Ma
,
Z.
,
Li
,
S.
,
Li
,
S.
, and
Bi
,
J.
,
1995
, “
Effect of Particle Size on Wear Behaviour of SiC Particulate-Reinforced Aluminum Alloy Composites
,”
J. Mater. Sci. Lett.
,
14
(
2
), pp.
114
116
.
15.
Mahdavi
,
S.
, and
Akhlaghi
,
F.
,
2011
, “
Effect of the SiC Particle Size on the Dry Sliding Wear Behavior of SiC and SiC–Gr-Reinforced Al6061 Composites
,”
J. Mater. Sci.
,
46
(
24
), pp.
7883
7894
.
16.
Bera
,
T.
,
Acharya
,
S.
, and
Sutradhar
,
G.
,
2019
, “
Mechanical and Dry Sliding Wear Behavior of LM6/Cenosphere Composites
,”
Int. J. Eng., Sci. Technol.
,
11
(
1
), pp.
1
9
.
17.
Paturi
,
U. M. R.
,
Palakurthy
,
S. T.
, and
Reddy
,
N. S.
,
2023
, “
The Role of Machine Learning in Tribology: A Systematic Review
,”
Arch. Comput. Methods Eng.
,
30
(
2
), pp.
1345
1397
.
18.
Agme
,
V. N.
,
Ashish
,
P.
,
Sridevi
,
R.
,
Suman
,
M.
,
and Babu
,
A.
, and
S
,
M. V.
,
2023
, “
Analysis and Prediction of Wear Characteristics of Sustainable Metal Matrix Composites Using Machine Learning With Decision Making Algorithm
,”
2023 4th International Conference on Smart Electronics and Communication (ICOSEC)
,
Trichy, India
,
Sept. 20–22
, pp.
1401
1407
.
19.
Prasanth
,
I. S. N. V. R.
,
Jeevanandam
,
P.
,
Selvaraju
,
P.
,
Kalidas
,
S.
,
Shaik
,
H.
,
Sujatha
,
P.
,
Manoharan
,
K.
,
Selvaraju
,
M.
, and
Bashyam
,
S.
,
2023
, “
Study of Friction and Wear Behavior of Graphene-Reinforced AA7075 Nanocomposites by Machine Learning
,”
J. Nanomater.
,
2023
(
1
), pp.
5723730
5723730
.
20.
Reena Roy
,
R.
,
Shanmugam
,
L.
,
Vinothini
,
A.
,
Venkatachalam
,
N.
,
Sumathy
,
G.
,
Murugeshan
,
B.
,
Mercy Rajaselvi Beaulah
,
P.
, and
Kerga
,
G. A.
,
2023
, “
Investigation of the Wear Behavior of AA6063/Zirconium Oxide Nanocomposites Using Hybrid Machine Learning Algorithms
,”
J. Chem.
,
2023
(
1
), p.
7571588
.
21.
Venkat
,
P. P.
,
Naidu
,
P. C.
,
Kumar
,
L. P.
,
Babu
,
K. V.
,
Prasad
,
M. K.
, and
Rao
,
M. V.
,
2023
, “
Effect of Al2O3 Particles on Mechanical, Microstructural and Tribological Characteristics of Al5052 Metal Matrix Composite Reinforced With Si3N4 Particles
,”
Mater. Today: Proc.
,
91
, pp.
158
166
.
22.
Dudek
,
G.
,
2022
, “
A Comprehensive Study of Random Forest for Short-Term Load Forecasting
,”
Energies
,
15
(
20
), p.
7547
.
23.
Singh
,
Pramod
,
2019
, “Random Forests,”
Machine Learning : with PySparkWith Natural Language Processing and Recommender Systems
,
P.
Singh
, ed.,
Apress Berkeley, CA
, pp.
1
223
.
24.
Svetnik
,
V.
,
Liaw
,
A.
,
Tong
,
C.
,
Culberson
,
J. C.
,
Sheridan
,
R. P.
, and
Feuston
,
B. P.
,
2003
, “
Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling
,”
J. Chem. Inf. Comput. Sci.
,
43
(
6
), pp.
1947
1958
.
25.
Cai
,
J.
,
Xu
,
K.
,
Zhu
,
Y.
,
Hu
,
F.
, and
Li
,
L.
,
2020
, “
Prediction and Analysis of Net Ecosystem Carbon Exchange Based on Gradient Boosting Regression and Random Forest
,”
Appl. Energy
,
262
, p.
114566
.
26.
Breiman
,
L.
,
Friedman
,
J.
,
Olshen
,
R.A.
, and
Stone
,
C. J.
,
2017
,
Classification and Regression Trees
, 1st ed.,
Routledge
,
New York
, pp.
368
368
.
27.
Chitti Babu Golla
,
N. R. R.
, and
Syed
,
I.
, 2025, “
Triboinformatics Approach for Prediction of High-Stress Abrasive Wear and Coefficient of Friction in Al/TiC Nanocomposites Using Machine Learning Techniques
,”
ASME J. Tribol.
,
147
(
2
), p.
021401
.
28.
Haykin
,
S.
,
1998
,
Neural Networks: A Comprehensive Foundation
,
Prentice Hall PTR
,
Hoboken, NJ
, pp.
1
768
.
29.
Schmidhuber
,
J.
,
2015
, “
Deep Learning in Neural Networks: An Overview
,”
Neural Net.
,
61
, pp.
85
117
.
30.
Sheikh
,
K. A.
, and
Khan
,
M. M.
,
2025
, “
Predictive Modeling of Abrasive Wear in In-Situ TiC Reinforced ZA37 Alloy: A Machine Learning Approach
,”
Tribol. Int.
,
202
, p.
110291
.
31.
Wen
,
G.
,
Li
,
Z.
,
Wu
,
J.
,
Gao
,
Z.
,
Li
,
Y.
, and
Zhou
,
H.
,
2024
, “
Friction Properties and Prediction of a Novel Copper-Based Powder Metallurgy Material Modified With TiB2/B4C Composite
,”
Ceram. Int.
,
cl17
(
Part B
), pp.
30763
30775
.
32.
Sheikh
,
K. A.
,
Khan
,
M. M.
, and
Bhat
,
M. N.
,
2025
, “
Comparative Study of Wear Behaviour of ZA37 Alloy, ZA37/SiC Composite, and Grey Cast Iron Under Lubricated Conditions: Predictive Modeling by Machine Learning
,”
Tribol. Int.
,
207
, p.
110623
.
33.
Prasanth
,
I.
,
Jeevanandam
,
P.
,
Selvaraju
,
P.
,
Sathish
,
K.
,
Hasane Ahammad
,
S.
,
Sujatha
,
P.
,
Kaarthik
,
M.
,
Mayakannan
,
S.
, and
Sasikumar
,
B.
,
2023
, “
Study of Friction and Wear Behavior of Graphene-Reinforced AA7075 Nanocomposites by Machine Learning
,”
J. Nanomater.
,
2023
(
1
), p.
5723730
.
34.
Dey
,
A.
,
Debnath
,
S.
, and
Pandey
,
K.
,
2017
, “
Optimization of Electrical Discharge Machining Process Parameters for Al6061/Cenosphere Composite Using Grey-Based Hybrid Approach
,”
Trans. Nonferrous Met. Soc. China
,
27
(
5
), pp.
998
1010
.
35.
Sheikh
,
K. A.
, and
Mir
,
F. A.
,
2024
, “
Microstructural Evolution and Wear Dynamics of Al5052/Cenosphere Metal Matrix Composite Fabricated Through Compo-Casting Technique
,”
Trans. Indian Inst. Met.
,
77
(
9
), pp.
2761
2775
.
36.
Shishkin
,
A.
,
Abramovskis
,
V.
,
Zalite
,
I.
,
Singh
,
A. K.
,
Mezinskis
,
G.
,
Popov
,
V.
, and
Ozolins
,
J.
,
2023
, “
Physical, Thermal, and Chemical Properties of Fly Ash Cenospheres Obtained From Different Sources
,”
Materials
,
16
(
5
), p.
2035
.
37.
Al-Samarai
,
R. A.
,
Haftirman
,
A. K.
, and
Al-Douri
,
Y.
,
2012
, “
Effect of Load and Sliding Speed on Wear and Friction of Aluminum-Silicon Casting Alloy
,”
Int. J. Sci. Res. Publ.
,
2
(
3
), pp.
1
4
.
38.
Zhang
,
J.
, and
Alpas
,
A.
,
1993
, “
Wear Regimes and Transitions in Al2O3 Particulate-Reinforced Aluminum Alloys
,”
Mater. Sci. Eng. A
,
161
(
2
), pp.
273
284
.
39.
Balaji
,
Y.
,
Keerthiprasad
,
K.
,
Babu
,
E.
,
Om Prakash
,
B.
,
Anjinappa
,
C.
,
Sharma
,
P.
,
Razak
,
A.
, and
Wodajo
,
A. W.
,
2024
, “
Dry Sliding Wear Characteristics of Al7075 Alloy-Reinforced with SiC and Cenosphere Particles
,”
Eng. Rep.
,
6
(
9
), p.
e12823
.
40.
Mondal
,
D.
,
Das
,
S.
,
Jha
,
A.
, and
Yegneswaran
,
A.
,
1998
, “
Abrasive Wear of Al Alloy–Al2O3 Particle Composite: A Study on the Combined Effect of Load and Size of Abrasive
,”
Wear
,
223
(
1–2
), pp.
131
138
.
41.
García-Cordovilla
,
C.
,
Narciso
,
J.
, and
Louis
,
E.
,
1996
, “
Abrasive Wear Resistance of Aluminum Alloy/Ceramic Particulate Composites
,”
Wear
,
192
(
1
), pp.
170
177
.
42.
Ahmed
,
R. M. S.
,
Nagaraj
,
B.
,
Kumar
,
N. K.
,
Kumar
,
S. G. S.
, and
Gajakosh
,
A.
,
2024
, “
A Comparative Study on Abrasive Wear Behavior of TiB2/Graphite Reinforced Cast and Hot Rolled Al7075-Based Hybrid MMCs
,”
J. Inst. Eng. (India): Series D
,
105
(
2
), pp.
597
613
.
43.
Sheikh
,
K. A.
, and
Khan
,
M. M.
,
2024
, “
Tribo-Informatics Analysis of In-Situ TiC Reinforced ZA27 Alloy: Microstructural Insights and Wear Performance Modeling by Machine Learning
,”
Tribol. Int.
,
199
, p.
110021
.
44.
Pasha
,
M. B.
,
Rao
,
R. N.
,
Ismail
,
S.
,
Gupta
,
M.
, and
Prasad
,
P. S.
,
2024
, “
Tribo-Informatics Approach to Predict Wear and Friction Coefficient of Mg/Si3N4 Composites Using Machine Learning Techniques
,”
Tribol. Int.
,
196
, p.
109696
.
45.
Moses
,
A.
,
Chen
,
D.
,
Wan
,
P.
, and
Wang
,
S.
,
2023
, “
Prediction of Electrochemical Corrosion Behavior of Magnesium Alloy Using Machine Learning Methods
,”
Mater. Today Commun.
,
37
, p.
107285
.
46.
Singh
,
K. S. K.
,
Kumar
,
S.
, and
Singh
,
K.
,
2022
, “
Computational Data-Driven Based Optimization of Tribological Performance of Graphene Filled Glass Fiber Reinforced Polymer Composite Using Machine Learning Approach
,”
Mater. Today: Proc.
,
66
, pp.
3838
3846
.
You do not currently have access to this content.