Graphical Abstract Figure

Lubrication mechanisms of PRTILs under external electrification

Graphical Abstract Figure

Lubrication mechanisms of PRTILs under external electrification

Close modal

Abstract

Conventional lubricants face significant challenges in electric vehicle (EV) systems due to their low electrical conductivity and inability to mitigate tribo-electrification effects which can result in increased friction, wear, and electrical discharge damage under external electrification. Consequently, conductive lubricants like ionic liquids (ILs) have emerged as promising alternatives, offering enhanced compatibility with EV applications. This study investigated the tribological behavior of four phosphonium-based room temperature ionic liquids (PRTILs) with trihexyltetradecyl phosphonium [P6,6,6,14] or tributyltetradecyl phosphonium [P4,4,4,14] cations and saccharinate [Sacc] or benzoate [Benz] anions under electrified conditions, targeting potential EV applications. Physicochemical properties, including viscosity and ionic conductivity, were measured using a viscometer and a conductivity meter, while tribological properties were evaluated using an electrified mini-traction machine and an electrified rotary ball-on-disk setup. The results revealed that all the PRTILs exhibited superior tribological (friction and wear) performance than mineral oil with or without electrification. PRTILs with the [Sacc] anion feature a double aromatic ring structure, while those with the [Benz] anion feature a single aromatic ring structure. Under low electrification (10 mA), [P6,6,6,14][Sacc] outperformed [Benz]-based PRTILs, showing a lower coefficient of friction and wear due to their higher viscosity and lower ionic conductivity. Additionally, [P6,6,6,14][Sacc] showed a power loss lower than [P4,4,4,14][Sacc] but higher than [Benz]-based PRTILs under tribo-electrification. The addition of graphene nanoplatelets (GNPs) reduced the power loss of [P6,6,6,14][Sacc] by 24% by reducing the electric contact resistance. Overall, double-ring aromatic [P6,6,6,14][Sacc] demonstrated superior tribological performance, and GNP additives enhanced their power efficiency, offering a promising pathway for IL-based lubricant development for electrified conditions.

References

1.
Markets & Markets
,
2024
, “Electric Vehicle Market Worth $620.3 Billion by 2030”.
2.
Farooq
,
M. U.
,
2024
, “Tribology of Electric Vehicles–A Comprehensive Survey of Recent Developments in Components and Key Future Avenues for Surfaces and Interfaces Research,” Available at SSRN 4726800.
3.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2019
, “
The Impact of Tribology on Energy Use and CO2 Emission Globally and in Combustion Engine and Electric Cars
,”
Tribol. Int.
,
135
, pp.
389
396
.
4.
Farfan-Cabrera
,
L. I.
,
2019
, “
Tribology of Electric Vehicles: A Review of Critical Components, Current State and Future Improvement Trends
,”
Tribol. Int.
,
138
, pp.
473
486
.
5.
Hemanth
,
G.
, and
Suresha
,
B.
,
2021
, “
Hybrid and Electric Vehicle Tribology: A Review
,”
Surf. Topogr. Metrol. Prop.
,
9
(
4
), p.
043001
.
6.
Chen
,
Y.
,
Jha
,
S.
,
Raut
,
A.
,
Zhang
,
W.
, and
Liang
,
H.
,
2020
, “
Performance Characteristics of Lubricants in Electric and Hybrid Vehicles: A Review of Current and Future Needs
,”
Front. Mech. Eng.
,
6
, p.
571464
.
7.
Cao-Romero-Gallegos
,
J. A.
,
Taghizadeh
,
S.
,
Aguilar-Rosas
,
O. A.
,
Dwyer-Joyce
,
R.
, and
Farfan-Cabrera
,
L. I.
,
2024
, “
The Effect of Electrical Current on Lubricant Film Thickness in Boundary and Mixed Lubrication Contacts Measured With Ultrasound
,”
Friction
,
12
(
8
), pp.
1882
1896
.
8.
Tajedini
,
M.
,
Bahrami
,
R.
,
Azhdari
,
R.
,
Sue
,
H.-J.
, and
Liang
,
H.
,
2024
, “
Influence of Electric Current on Tribological Performance of Grease-Lubricated Steels
,”
Tribol. Int.
,
200
, p.
110121
.
9.
Saha
,
S.
,
Janik
,
J.
,
Mills
,
G.
,
Qu
,
J.
, and
Jackson
,
R. L.
,
2024
, “
Influence of Ionic Liquids and Ag Nanoparticles as Lubricant Additives on Electrically Induced Bearing Damage
,”
2024 IEEE 69th Holm Conference on Electrical Contacts (HOLM)
,
Annapolis, MD
,
Oct. 6–10
, IEEE, pp.
1
6
.
10.
Li
,
C.
,
Wang
,
G.
,
Han
,
Q.
,
Feng
,
G.
,
Wang
,
L.
, and
Wang
,
S.
,
2022
, “
Effects of Current-Carrying Conditions on Lubrication and Tribological Performance of Ionic Liquid
,”
J. Mol. Liq.
,
367, Part B
, p.
120471
.
11.
Ye
,
C.
,
Liu
,
W.
,
Chen
,
Y.
, and
Yu
,
L.
,
2001
, “
Room-Temperature Ionic Liquids: A Novel Versatile Lubricant
,”
Chem. Commu.
,
21
(
21
), pp.
2244
2245
.
12.
Reeves
,
C. J.
,
Siddaiah
,
A.
, and
Menezes
,
P. L.
,
2018
, “
Tribological Study of Imidazolium and Phosphonium Ionic Liquid-Based Lubricants as Additives in Carboxylic Acid-Based Natural Oil: Advancements in Environmentally Friendly Lubricants
,”
J. Clean. Prod.
,
176
, pp.
241
250
.
13.
Reeves
,
C. J.
,
Siddaiah
,
A.
, and
Menezes
,
P. L.
,
2019
, “
Friction and Wear Behavior of Environmentally Friendly Ionic Liquids for Sustainability of Biolubricants
,”
ASME J. Tribol.
,
141
(
5
), p. 051604.
14.
Kasar
,
A. K.
,
Reeves
,
C. J.
, and
Menezes
,
P. L.
,
2021
, “
The Effect of Particulate Additive Mixtures on the Tribological Performance of Phosphonium-Based Ionic Liquid Lubricants
,”
Tribol. Int.
,
165
, p.
107300
.
15.
Reeves
,
C. J.
,
Siddaiah
,
A.
, and
Menezes
,
P. L.
,
2017
, “
Ionic Liquids: A Plausible Future of Bio-Lubricants
,”
J. Bio- Tribo-Corros.
,
3
(
2
), p.
18
.
16.
Zheng
,
G.
,
Zhang
,
G.
,
Ding
,
T.
,
Xiang
,
X.
,
Li
,
F.
,
Ren
,
T.
,
Liu
,
S.
, and
Lei
,
Z.
,
2017
, “
Tribological Properties and Surface Interaction of Novel Water-Soluble Ionic Liquid in Water-Glycol
,”
Tribol. Int.
,
116
, pp.
440
448
.
17.
Kawada
,
S.
,
Sasaki
,
S.
, and
Miyatake
,
M.
,
2021
, “
In-Situ Observation of Tribo-Decomposition Behavior of Ionic Liquids Composed of Phosphonium-Cation and Cyano-Anion Using Quadrupole Mass Spectrometer
,”
Tribol. Int.
,
153
, p.
106547
.
18.
Minami
,
I.
,
Inada
,
T.
,
Sasaki
,
R.
, and
Nanao
,
H.
,
2010
, “
Tribo-Chemistry of Phosphonium-Derived Ionic Liquids
,”
Tribol. Lett.
,
40
(
2
), pp.
225
235
.
19.
Viesca
,
J.
,
Mallada
,
M.
,
Blanco
,
D.
,
Fernández-González
,
A.
,
Espina-Casado
,
J.
,
González
,
R.
, and
Battez
,
A. H.
,
2017
, “
Lubrication Performance of an Ammonium Cation-Based Ionic Liquid Used as an Additive in a Polar Oil
,”
Tribol. Int.
,
116
, pp.
422
430
.
20.
Johnson
,
D. W.
,
2016
,
Advances in Tribology
,
IntechOpen
,
London, UK
, pp.
175
195
.
21.
Cai
,
M.
,
Yu
,
Q.
,
Liu
,
W.
, and
Zhou
,
F.
,
2020
, “
Ionic Liquid Lubricants: When Chemistry Meets Tribology
,”
Chem. Soc. Rev.
,
49
(21), pp.
7753
7818
.
22.
Rahman
,
M. H.
,
Martini
,
A.
, and
Menezes
,
P. L.
,
2025
, “
The Role of Physicochemical and Structural Properties of Bio-Based Aromatic Phosphonium Ionic Liquids on Their Electrochemical Interaction With Steel
,”
J. Mol. Liq
., in press.
23.
Liu
,
T.
,
Rahman
,
M. H.
,
Menezes
,
P. L.
, and
Martini
,
A.
,
2024
, “
The Impact of Fe-Anion Interactions on Corrosion of Ferrous Surfaces by Phosphonium Ionic Liquids
,”
Corros. Sci.
,
227
, p.
111734
.
24.
Ghanbarzadeh
,
A.
,
Wilson
,
M.
,
Morina
,
A.
,
Dowson
,
D.
, and
Neville
,
A.
,
2016
, “
Development of a New Mechano-Chemical Model in Boundary Lubrication
,”
Tribol. Int.
,
93, Part B
, pp.
573
582
.
25.
Erdemir
,
A.
,
2005
, “
Review of Engineered Tribological Interfaces for Improved Boundary Lubrication
,”
Tribol. Int.
,
38
(
3
), pp.
249
256
.
26.
Rahman
,
M. H.
,
Martini
,
A.
, and
Menezes
,
P. L.
,
2024
, “Relationship Between Structure and Properties of Bio-Based Aromatic Ionic Liquids for Tribological Applications,” Available at SSRN 4933180.
27.
Rahman
,
M. H.
,
Liu
,
T.
,
Macias
,
T.
,
Misra
,
M.
,
Patel
,
M.
,
Martini
,
A.
, and
Menezes
,
P. L.
,
2023
, “
Physicochemical and Tribological Comparison of Bio-and Halogen-Based Ionic Liquid Lubricants
,”
J. Mol. Liq.
,
369
, p.
120918
.
28.
Rahman
,
M. H.
,
Khajeh
,
A.
,
Panwar
,
P.
,
Patel
,
M.
,
Martini
,
A.
, and
Menezes
,
P. L.
,
2022
, “
Recent Progress on Phosphonium-Based Room Temperature Ionic Liquids: Synthesis, Properties, Tribological Performances and Applications
,”
Tribol. Int.
,
167
, p.
107331
.
29.
Khajeh
,
A.
,
Rahman
,
M. H.
,
Liu
,
T.
,
Panwar
,
P.
,
Menezes
,
P. L.
, and
Martini
,
A.
,
2022
, “
Thermal Decomposition of Phosphonium Salicylate and Phosphonium Benzoate Ionic Liquids
,”
J. Mol. Liq.
,
352
, p.
118700
.
30.
Shah
,
R.
,
Gashi
,
B.
, and
Rosenkranz
,
A.
,
2022
, “
Latest Developments in Designing Advanced Lubricants and Greases for Electric Vehicles—An Overview
,”
Lubr. Sci.
,
34
(
8
), pp.
515
526
.
31.
Rivera
,
N.
,
Prado
,
J.
,
Lugo
,
L.
,
Iglesias
,
P.
,
Hernández Battez
,
A.
, and
Viesca
,
J.
,
2024
, “
Magnetic and Electrical Compatibility of Transmission Fluids Additised With Ionic Liquids for Hybrid/EV Lubrication
,”
J. Mol. Liq.
,
398
, p.
124217
.
32.
Manoj
,
A.
,
Kasar
,
A. K.
, and
Menezes
,
P. L.
,
2019
, “
Tribocorrosion of Porous Titanium Used in Biomedical Applications
,”
J. Bio- Tribo-Corros.
,
5
(
1
), pp.
1
16
.
33.
Egorov
,
V. M.
,
Djigailo
,
D. I.
,
Momotenko
,
D. S.
,
Chernyshov
,
D. V.
,
Torocheshnikova
,
I. I.
,
Smirnova
,
S. V.
, and
Pletnev
,
I. V.
,
2010
, “
Task-Specific Ionic Liquid Trioctylmethylammonium Salicylate as Extraction Solvent for Transition Metal Ions
,”
Talanta
,
80
(
3
), pp.
1177
1182
.
34.
Bhoi
,
P. R.
, and
Rahman
,
M. H.
,
2022
, “
Hydrocarbons Recovery Through Catalytic Pyrolysis of Compostable and Recyclable Waste Plastics Using a Novel Desk-Top Staged Reactor
,”
Environ. Technol. Innov.
,
27
, p.
102453
.
35.
Kasar
,
A. K.
,
Rahman
,
M. H.
,
D'Souza
,
B.
, and
Menezes
,
P. L.
,
2023
, “
Tribological Performance of Ionic Liquid Impregnated Porous Aluminum Borate Ceramic
,”
Tribol. Int.
,
180
, p.
108219
.
36.
Shimizu
,
Y.
, and
Spikes
,
H. A.
,
2016
, “
The Influence of Slide–Roll Ratio on ZDDP Tribofilm Formation
,”
Tribol. Lett.
,
64
(1), pp.
1
11
.
37.
Bayat
,
R.
, and
Lehtovaara
,
A.
,
2020
, “
EHL/Mixed Transition of Fully Formulated Environmentally Acceptable Gear Oils
,”
Tribol. Int.
,
146
, p.
106158
.
38.
Björling
,
M.
,
Miettinen
,
J.
,
Marklund
,
P.
,
Lehtovaara
,
A.
, and
Larsson
,
R.
,
2015
, “
The Correlation Between Gear Contact Friction and Ball on Disc Friction Measurements
,”
Tribol. Int.
,
83
, pp.
114
119
.
39.
Johnson
,
K. L.
, and
Tevaarwerk
,
J.
,
1977
, “
Shear Behaviour of Elastohydrodynamic Oil Films
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
356
(
1685
), pp.
215
236
.
40.
Sikdar
,
S.
, and
Menezes
,
P. L.
,
2024
, “
Enhancing Lubrication Performance of Plastic Oil Lubricant With Oleic Acid-Functionalized Graphene Nanoplatelets and Hexagonal Boron Nitride Solid Lubricant Additives
,”
Lubricants
,
12
(
7
), p.
251
.
41.
Bayat
,
R.
,
2022
, “Evaluation of Gear Oils Lubrication Performance in a Rolling/Sliding Contact”.
42.
Rahman
,
M. H.
,
Sikdar
,
S.
,
Bhoi
,
P.
, and
Menezes
,
P.
,
2024
, “
The Role of Ionic Liquid Additives in Enhancing the Tribological Performance of Plastic-Derived Oils
,”
J. Mol. Liq.
,
414
, p.
126099
.
43.
Zuo
,
X.
,
Wen
,
D.
,
Zhang
,
M.
, and
Zhou
,
Y.
,
2024
, “
Carbon Nanotubes-Titanium Diboride/Copper (CNTs-TiB2/Cu) Laser Cladding Layer With Enhanced Tribo-Electrical Property on Wind Turbine Pitch Slip Ring
,”
Tribol. Trans.
,
67
(
6
), pp.
1294
1302
.
44.
Liu
,
T.
,
Rahman
,
M. H.
,
Menezes
,
P. L.
, and
Martini
,
A.
,
2022
, “
Effect of Ion Pair on Contact Angle for Phosphonium Ionic Liquids
,”
J. Phys. Chem. B
,
126
(
23
), pp.
4354
4363
.
45.
Zhu
,
L.
,
Dong
,
J.
,
Zeng
,
Q.
,
Chao
,
M.
,
Li
,
W.
,
Gong
,
K.
, and
Wang
,
X.
,
2022
, “
Study of Two Green Phosphonium-Based Ionic Liquids Lubricants for Steel/Steel Contact
,”
Lubr. Sci.
,
34
(
7
), pp.
467
479
.
46.
Rahman
,
M. H.
,
Martini
,
A.
, and
Menezes
,
P. L.
,
2025
, “
Relationship Between Structure and Properties of Bio-Based Aromatic Ionic Liquids for Tribological Applications
,”
Tribol. Int.
,
202
, p.
110353
.
47.
Fischer-Cripps
,
A.
,
1999
, “
The Hertzian Contact Surface
,”
J. Mater. Sci.
,
34
(
1
), pp.
129
137
.
48.
Shisode
,
M.
,
Hazrati
,
J.
,
Mishra
,
T.
,
De Rooij
,
M.
, and
van den Boogaard
,
T.
,
2021
, “
Evolution of Real Area of Contact Due to Combined Normal Load and Sub-Surface Straining in Sheet Metal
,”
Friction
,
9
(
4
), pp.
840
855
.
49.
Ravdel
,
B.
, and
Puglia
,
F.
,
2022
, “
Thermochemical Approach to Determining Battery's Heat Release: RI2 Formula
,”
J. Electrochem. Soc.
,
169
(
4
), p.
040510
.
You do not currently have access to this content.