Abstract

Shoe-floor friction, quantified by the coefficient of friction (COF), is an important predictor of the risk of slip-and-fall accidents. There is a commonly used model of friction by B. Persson that describes viscoelastic dissipation due to hysteretic properties of rubber. Applied to shoe-floor friction, the model calculates the COF by using two primary inputs: (1) the multiscale surface topography of floor tiles and (2) the time-dependent material properties of the shoe rubber. While this theory is well accepted by many theoreticians and modelers, there is almost no direct experimental validation. Here, the model is tested by comparing against experimental measurements of COF using three different designs of shoes, ten different porcelain-tile floors, and canola oil as a contaminant. The results demonstrated that, while the model was predictive of trends, its values were too large by an average of 1050% when all scales of topography were included. However, this predictive power was improved (p < .0001, RMSerror = 0.066) when the range of size scales of topography was limited to exclude the smallest-scale topography features. Scientifically, these findings provide new insights about which length scales of topography are most relevant to performance under different conditions. For real-world application, these results show the potential of this model to be used by floor designers and engineers to develop or select materials to create slip-resistant shoes and flooring. This would then create safer workplace environments, decreasing the significant economic burden and human suffering caused by slip-and-fall accidents.

References

1.
2022
, Numbers of Nonfatal Occupational Injuries and Illnesses by Industry and Case Types, https://www.bls.gov/iif/nonfatal-injuries-and-illnesses-tables/table-2-injury-and-illness-counts-by-industry-2022-national.htm
2.
2021
, Fatal Occupational Injuries by Occupation and Event or Exposure, All United States, https://www.bls.gov/iif/fatal-injuries-tables/fatal-occupational-injuries-table-a-5-2021.htm
3.
Courtney
,
T. K.
,
Sorock
,
G. S.
,
Manning
,
D. P.
,
Collins
,
J. W.
, and
Holbein-Jenny
,
M. A.
,
2001
, “
Occupational Slip, Trip, and Fall-Related Injuries can the Contribution of Slipperiness be Isolated?
,”
Ergonomics
,
44
(
13
), pp.
1118
1137
.
5.
Redfern
,
M. S.
,
Cham
,
R.
,
Gielo-Perczak
,
K.
,
Grönqvist
,
R.
,
Hirvonen
,
M.
,
Lanshammar
,
H.
,
Marpet
,
M.
,
Pai IV
,
C. Y.-C.
, and
Powers
,
C.
,
2001
, “
Biomechanics of Slips
,”
Ergonomics
,
44
(
13
), pp.
1138
1166
.
6.
Strandberg
,
L.
, and
Lanshammar
,
H.
,
1981
, “
The Dynamics of Slipping Accidents
,”
J. Occup. Accid.
,
3
(
3
), pp.
153
162
.
7.
Chang
,
W.-R.
,
Grönqvist
,
R.
,
Leclercq
,
S.
,
Myung
,
R.
,
Makkonen
,
L.
,
Strandberg
,
L.
,
Brungraber
,
R. J.
,
Mattke
,
U.
, and
Thorpe
,
S. C.
,
2001
, “
The Role of Friction in the Measurement of Slipperiness, Part 1: Friction Mechanisms and Definition of Test Conditions
,”
Ergonomics
,
44
(
13
), pp.
1217
1232
.
8.
Chang
,
W.-R.
,
Grönqvist
,
R.
,
Leclercq
,
S.
,
Brungraber
,
R. J.
,
Mattke
,
U.
,
Strandberg
,
L.
,
Thorpe
,
S. C.
,
Myung
,
R.
,
Makkonen
,
L.
, and
Courtney
,
T. K.
,
2001
, “
The Role of Friction in the Measurement of Slipperiness, Part 2: Survey of Friction Measurement Devices
,”
Ergonomics
,
44
(
13
), pp.
1233
1261
.
9.
Beschorner
,
K. E.
,
Albert
,
D. L.
, and
Redfern
,
M. S.
,
2016
, “
Required Coefficient of Friction During Level Walking is Predictive of Slipping
,”
Gait Posture
,
48
, pp.
256
260
.
10.
Hanson
,
J. P.
,
Redfern
,
M. S.
, and
Mazumdar
,
M.
,
1999
, “
Predicting Slips and Falls Considering Required and Available Friction
,”
Ergonomics
,
42
(
12
), pp.
1619
1633
.
11.
Beschorner
,
K. E.
,
Redfern
,
M. S.
,
Porter
,
W. L.
, and
Debski
,
R. E.
,
2007
, “
Effects of Slip Testing Parameters on Measured Coefficient of Friction
,”
Appl. Ergon.
,
38
(
6
), pp.
773
780
.
12.
Blanchette
,
M. G.
, and
Powers
,
C. M.
,
2015
, “
Slip Prediction Accuracy and Bias of the SATRA STM 603 Whole Shoe Tester
,”
J. Test. Eval.
,
43
(
3
), pp.
491
498
.
13.
Blanchette
,
M. G.
, and
Powers
,
C. M.
,
2015
, “
The Influence of Footwear Tread Groove Parameters on Available Friction
,”
Appl. Ergon.
,
50
, pp.
237
241
.
14.
Iraqi
,
A.
,
Vidic
,
N. S.
,
Redfern
,
M. S.
, and
Beschorner
,
K. E.
,
2020
, “
Prediction of Coefficient of Friction Based on Footwear Outsole Features
,”
Appl. Ergon.
,
82
, p.
102963
.
15.
Jones
,
T.
,
Iraqi
,
A.
, and
Beschorner
,
K.
,
2018
, “
Performance Testing of Work Shoes Labeled as Slip Resistant
,”
Appl. Ergon.
,
68
, pp.
304
312
.
16.
Albert
,
D.
,
Moyer
,
B.
, and
Beschorner
,
K. E.
,
2017
, “
Three-Dimensional Shoe Kinematics During Unexpected Slips: Implications for Shoe–Floor Friction Testing
,”
IISE Trans. Occup. Ergon. Hum. Factors
,
5
(
1
), pp.
1
11
.
17.
Iraqi
,
A.
,
Cham
,
R.
,
Redfern
,
M. S.
,
Vidic
,
N. S.
, and
Beschorner
,
K. E.
,
2018
, “
Kinematics and Kinetics of the Shoe During Human Slips
,”
J. Biomech.
,
74
, pp.
57
63
.
18.
Bell
,
J. L.
,
Collins
,
J. W.
, and
Chiou
,
S.
,
2019
, “
Effectiveness of a no-Cost-to-Workers, Slip-Resistant Footwear Program for Reducing Slipping-Related Injuries in Food Service Workers
,”
Scand. J. Work, Environ. Health
,
45
(
2
), pp.
194
202
.
19.
Cockayne
,
S.
,
Fairhurst
,
C.
,
Frost
,
G.
,
Liddle
,
M.
,
Cunningham-Burley
,
R.
,
Zand
,
M.
,
Hewitt
,
C.
,
Iles-Smith
,
H. M.
,
Green
,
L.
, and
Torgerson
,
D. J.
,
2021
, “
Slip-Resistant Footwear Reduces Slips Among National Health Service Workers in England: a Randomised Controlled Trial
,”
Occupat. Environ. Med.
,
78
(
7
), pp.
472
478
.
20.
Verma
,
S. K.
,
Chang
,
W. R.
,
Courtney
,
T. K.
,
Lombardi
,
D. A.
,
Huang
,
Y.-H.
,
Brennan
,
M. J.
,
Mittleman
,
M. A.
,
Ware
,
J. H.
, and
Perry
,
M. J.
,
2011
, “
A Prospective Study of Floor Surface, Shoes, Floor Cleaning and Slipping in US Limited-Service Restaurant Workers
,”
Occupat. Environ. Med.
,
68
(
4
), pp.
279
285
.
21.
Verma
,
S. K.
,
Zhao
,
Z.
,
Courtney
,
T. K.
,
Chang
,
W.-R.
,
Lombardi
,
D. A.
,
Huang
,
Y.-H.
,
Brennan
,
M. J.
, and
Perry
,
M. J.
,
2014
, “
Duration of Slip-Resistant Shoe Usage and the Rate of Slipping in Limited-Service Restaurants: Results From a Prospective and Crossover Study
,”
Ergonomics
,
57
(
12
), pp.
1919
1926
.
22.
Cowap
,
M. J.
,
Moghaddam
,
S. R.
,
Menezes
,
P. L.
, and
Beschorner
,
K. E.
,
2015
, “
Contributions of Adhesion and Hysteresis to Coefficient of Friction Between Shoe and Floor Surfaces: Effects of Floor Roughness and Sliding Speed
,”
Tribol. Mater., Surf. Interfaces
,
9
(
2
), pp.
77
84
.
23.
Mate
,
C. M.
, and
Carpick
,
R. W.
,
2019
,
Tribology on the Small Scale: A Modern Textbook on Friction, Lubrication, and Wear
,
Oxford University Press
,
Oxford, UK
.
24.
Moore
,
C. T.
,
Menezes
,
P. L.
,
Lovell
,
M. R.
, and
Beschorner
,
K. E.
,
2012
, “
Analysis of Shoe Friction During Sliding Against Floor Material: Role of Fluid Contaminant
,”
ASME J. Tribol.
,
134
(
4
), p.
041104
.
25.
Persson
,
B. N.
,
2001
, “
Theory of Rubber Friction and Contact Mechanics
,”
J. Chem. Phys.
,
115
(
8
), pp.
3840
3861
.
26.
Strobel
,
C. M.
,
Menezes
,
P. L.
,
Lovell
,
M. R.
, and
Beschorner
,
K. E.
,
2012
, “
Analysis of the Contribution of Adhesion and Hysteresis to Shoe–Floor Lubricated Friction in the Boundary Lubrication Regime
,”
Tribol. Lett.
,
47
(
3
), pp.
341
347
.
27.
Cowap
,
M.
, and
Beschorner
,
K.
,
2012
, “
The Effects of Floor Roughness on Shoe-Floor Friction Adhesion and Hysteresis
,”
International Joint Tribology Conference
,
Denver, CO
,
Oct. 7–10
, pp.
111
113
.
28.
Hardy
,
W. B.
, and
Bircumshaw
,
I.
,
1925
, “
Bakerian Lecture.-Boundary Lubrication.-Plane Surfaces and the Limitations of Amontons' Law
,”
Proc. R. Soc. London, Ser. A, Containing Papers Math. Phys. Charact.
,
108
(
745
), pp.
1
27
.
29.
Israelachvili
,
J. N.
,
2005
, “
Importance of Pico-Scale Topography of Surfaces for Adhesion, Friction, and Failure
,”
MRS Bulletin
,
30
(
7
), pp.
533
539
.
30.
Moghaddam
,
S. R.
,
Acharya
,
A.
,
Redfern
,
M. S.
, and
Beschorner
,
K. E.
,
2018
, “
Predictive Multiscale Computational Model of Shoe-Floor Coefficient of Friction
,”
J. Biomech.
,
66
, pp.
145
152
.
31.
Chang
,
W.-R.
,
1998
, “
The Effect of Surface Roughness on Dynamic Friction Between Neolite and Quarry Tile
,”
Safety Sci.
,
29
(
2
), pp.
89
105
.
32.
Randolph
,
A. B.
,
Reifler
,
K.
,
Chadha
,
V.
,
Jacobs
,
T. D.
, and
Beschorner
,
K. E.
,
2024
, “
The Need for Better Metrics for Floor-Tile Topography: Conventional Metrics Correlate Only Modestly with Shoe-Floor Friction
,”
Tribol. Int.
,
193
, p.
109366
.
33.
Chang
,
W.-R.
,
Grönqvist
,
R.
,
Hirvonen
,
M.
, and
Matz
,
S.
,
2004
, “
The Effect of Surface Waviness on Friction Between Neolite and Quarry Tiles
,”
Ergonomics
,
47
(
8
), pp.
890
906
.
34.
Chang
,
W.-R.
,
Matz
,
S.
,
Grönqvist
,
R.
, and
Hirvonen
,
M.
,
2010
, “
Linear Regression Models of Floor Surface Parameters on Friction Between Neolite and Quarry Tiles
,”
Appl. Ergon.
,
41
(
1
), pp.
27
33
.
35.
Jacobs
,
T. D.
,
Junge
,
T.
, and
Pastewka
,
L.
,
2017
, “
Quantitative Characterization of Surface Topography Using Spectral Analysis
,”
Surf. Topogr. Metrol. Prop.
,
5
(
1
), p.
013001
.
36.
Ding
,
R.
,
Gujrati
,
A.
,
Pendolino
,
M. M.
,
Beschorner
,
K. E.
, and
Jacobs
,
T. D.
,
2021
, “
Going Beyond Traditional Roughness Metrics for Floor Tiles: Measuring Topography Down to the Nanoscale
,”
Tribol. Lett.
,
69
(
3
), p.
92
.
37.
Borodich
,
F. M.
,
Pepelyshev
,
A.
, and
Jin
,
X.
,
2024
, “
A Multiscale Statistical Analysis of Rough Surfaces and Applications to Tribology
,”
Mathematics
,
12
(
12
), p.
1804
.
38.
Sokoloff
,
J.
,
2012
, “
Surface Roughness and Dry Friction
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
,
85
(
2
), p.
027102
.
39.
Henriques
,
I.
,
Borges
,
L.
,
Costa
,
M.
,
Soares
,
B.
, and
Castello
,
D.
,
2018
, “
Comparisons of Complex Modulus Provided by Different DMA
,”
Polym. Test.
,
72
, pp.
394
406
.
40.
Cowie
,
J. M. G.
, and
Arrighi
,
V.
,
2007
,
Polymers: Chemistry and Physics of Modern Materials
,
CRC Press
,
Boca Raton, FL
.
41.
Artiaga
,
R.
, and
García-Diez
,
A.
,
2005
,
Fundamentals of DMA
,
Departamento de Ingeniería Industrial II. Escola Politécnica Superior
,
Universidade da Coruña
.
42.
Chartoff
,
R. P.
,
Menczel
,
J. D.
, and
Dillman
,
S. H.
,
2009
,
Thermal Analysis of Polymers: Fundamentals and Applications
,
Wiley
,
Hoboken, NJ
, pp.
387
495
.
43.
Campañá
,
C.
, and
Müser
,
M. H.
,
2007
, “
Contact Mechanics of Real vs. Randomly Rough Surfaces: A Green's Function Molecular Dynamics Study
,”
Europhys. Lett.
,
77
(
3
), p.
38005
.
44.
Dalvi
,
S.
,
Gujrati
,
A.
,
Khanal
,
S. R.
,
Pastewka
,
L.
,
Dhinojwala
,
A.
, and
Jacobs
,
T. D.
,
2019
, “
Linking Energy Loss in Soft Adhesion to Surface Roughness
,”
Proc. Natl. Acad. Sci. USA
,
116
(
51
), pp.
25484
25490
.
45.
Kabir
,
M.
,
Lovell
,
M. R.
, and
Higgs
,
C. F.
,
2008
, “
Utilizing the Explicit Finite Element Method for Studying Granular Flows
,”
Tribol. Lett.
,
29
(
2
), pp.
85
94
.
46.
Lovell
,
M. R.
,
2001
, “
Evaluation of Critical Interfacial Friction in Cross Wedge Rolling
,”
ASME J. Tribol.
,
123
(
2
), pp.
424
429
.
47.
Hale
,
J.
,
O'Connell
,
A.
,
Lewis
,
R.
,
Carré
,
M.
, and
Rongong
,
J.
,
2021
, “
An Evaluation of Shoe Tread Parameters Using FEM
,”
Tribol. Int.
,
153
, p.
106570
.
48.
Heinrich
,
G.
,
Klüppel
,
M.
, and
Vilgis
,
T. A.
,
2000
, “
Evaluation of Self-Affine Surfaces and Their Implication for Frictional Dynamics as Illustrated with a Rouse Material
,”
Comput. Theor. Polym. Sci.
,
10
(
1-2
), pp.
53
61
.
49.
Jakobsen
,
L.
,
2023
,
Elastomer Friction–Fundamental and Footwear Research
,
Technical University of Denmark
,
Lyngby, Denmark
.
50.
Chadha
,
V.
,
Miller
,
N.
,
Ding
,
R.
,
Beschorner
,
K. E.
, and
Jacobs
,
T. D.
,
2024
, “
Evaluating Scanning Electron Microscopy for the Measurement of Small-Scale Topography
,”
Surf. Topogr.: Metrol. Prop.
,
12
(
3
), p.
035010
.
51.
Liu
,
Y.
, and
Glass
,
G.
,
2013
, “Effects of mesh density on finite element analysis,” No. 0148-7191, SAE Technical Paper.
52.
Ing
,
H.
,
2024
, “
Prediction of Oily Shoe-Floor Friction Using a Multiscale Hysteresis Mechanics Model
,”
Unpublished Master's Thesis
,
University of Pittsburgh
,
Pittsburgh, PA
.
53.
Centeno Gil
,
O. J.
,
2009
, Finite Element Modeling of Rubber Bushing for Crash Simulation-Experimental Tests and Validation.
54.
Suh
,
J. B.
,
2007
,
Stress Analysis of Rubber Blocks Under Vertical Loading and Shear Loading
,
University of Akron
,
Akron, OH
.
55.
Beschorner
,
K. E.
,
Chanda
,
A.
,
Moyer
,
B. E.
,
Reasinger
,
A.
,
Griffin
,
S. C.
, and
Johnston
,
I. M.
,
2023
, “
Validating the Ability of a Portable Shoe-Floor Friction Testing Device, NextSTEPS, to Predict Human Slips
,”
Appl. Ergon.
,
106
, p.
103854
.
56.
Iraqi
,
A.
,
Cham
,
R.
,
Redfern
,
M. S.
, and
Beschorner
,
K. E.
,
2018
, “
Coefficient of Friction Testing Parameters Influence the Prediction of Human Slips
,”
Appl. Ergon.
,
70
, pp.
118
126
.
57.
Sundaram
,
V.
,
Hemler
,
S. L.
,
Chanda
,
A.
,
Haight
,
J. M.
,
Redfern
,
M. S.
, and
Beschorner
,
K. E.
,
2020
, “
Worn Region Size of Shoe Soles Impacts Human Slips: Testing a Mechanistic Model
,”
J. Biomech.
, p.
109797
.
58.
Beschorner
,
K. E.
,
Iraqi
,
A.
,
Redfern
,
M. S.
,
Moyer
,
B. E.
, and
Cham
,
R.
,
2020
, “
Influence of Averaging Time-Interval on Shoe-Floor-Contaminant Available Coefficient of Friction Measurements
,”
Appl. Ergon.
,
82
, p.
102959
.
59.
NFSI
,
2021
,
NFSI B101.7: Standard Test Method for Lab Measurement of Footwear Heel Outsole Material Slip Resistance on Liquid-Contaminated Floor Surfaces
,
The National Floor Safety Institute
,
Southlake, TX
.
60.
Moghaddam
,
S. R. M.
,
Redfern
,
M. S.
, and
Beschorner
,
K. E.
,
2015
, “
A Microscopic Finite Element Model of Shoe–Floor Hysteresis and Adhesion Friction
,”
Tribol. Lett.
,
59
(
1
), pp.
1
10
.
61.
Röttger
,
M. C.
,
Sanner
,
A.
,
Thimons
,
L. A.
,
Junge
,
T.
,
Gujrati
,
A.
,
Monti
,
J. M.
,
Nöhring
,
W. G.
,
Jacobs
,
T. D.
, and
Pastewka
,
L.
,
2022
, “
Contact. Engineering—Create, Analyze and Publish Digital Surface Twins From Topography Measurements Across Many Scales
,”
Surf. Topogr. Metrol. Prop.
,
10
(
3
), p.
035032
.
62.
Gujrati
,
A.
,
Khanal
,
S. R.
,
Pastewka
,
L.
, and
Jacobs
,
T. D.
,
2018
, “
Combining TEM, AFM, and Profilometry for Quantitative Topography Characterization Across all Scales
,”
ACS Appl. Mater. Interfaces
,
10
(
34
), pp.
29169
29178
.
63.
Thimons
,
L. A.
,
Gujrati
,
A.
,
Sanner
,
A.
,
Pastewka
,
L.
, and
Jacobs
,
T. D.
,
2021
, “
Hard-Material Adhesion: Which Scales of Roughness Matter?
,”
Exp. Mech.
,
61
(
7
), pp.
1109
1120
.
64.
Hemler
,
S. L.
,
Charbonneau
,
D. N.
, and
Beschorner
,
K. E.
,
2020
, “
Predicting Hydrodynamic Conditions Under Worn Shoes Using the Tapered-Wedge Solution of Reynolds Equation
,”
Tribol. Int.
,
145
, p.
106161
.
65.
Moore
,
C.
, and
Beschorner
,
K.
, “
Effect of Shoe Roughness on Shoe-Floor Lubrication
,”
2010 International Conference on Fall Prevention and Protection
,
Morgantown, WV
,
May 2010
.
66.
Persson
,
B. N.
,
Albohr
,
O.
,
Tartaglino
,
U.
,
Volokitin
,
A.
, and
Tosatti
,
E.
,
2004
, “
On the Nature of Surface Roughness with Application to Contact Mechanics, Sealing, Rubber Friction and Adhesion
,”
J. Phys.: Condens. Matter
,
17
(
1
), p.
R1
R62
.
67.
Kumar
,
N.
,
Dalvi
,
S.
,
Sumant
,
A. V.
,
Pastewka
,
L.
,
Jacobs
,
T. D.
, and
Dhinojwala
,
A.
,
2024
, “
Small-Scale Roughness Entraps Water and Controls Underwater Adhesion
,”
Sci. Adv.
,
10
(
32
), p.
eadn8343
.
68.
Beschorner
,
K. E.
,
Nasarwanji
,
M.
,
Deschler
,
C.
, and
Hemler
,
S. L.
,
2024
, “
Prospective Validity Assessment of a Friction Prediction Model Based on Tread Outsole Features of Slip-Resistant Shoes
,”
Appl. Ergon.
,
114
, p.
104110
.
69.
Ing
,
H.
,
Chadha
,
V.
,
Jacobs
,
T. D. B.
, and
Beschorner
,
K. E.
,
2025
,
Data Set for Validation of a Multiscale, Hysteresis Mechanics Model in Predicting Oily Shoe-Floor Friction Across Surfaces With Varying Finishes
,
University of Pittsburgh
,
70.
Jakobsen
,
L.
,
Auganaes
,
S. B.
,
Buene
,
A. F.
,
Sivebaek
,
I. M.
, and
Klein-Paste
,
A.
,
2023
, “
Dynamic and Static Friction Measurements of Elastomer Footwear Blocks on ice Surface
,”
Tribol. Int.
,
178
, p.
108064
.
71.
Li
,
K. W.
, and
Chen
,
C. J.
,
2004
, “
The Effect of Shoe Soling Tread Groove Width on the Coefficient of Friction with Different Sole Materials, Floors, and Contaminants
,”
Appl. Ergon.
,
35
(
6
), pp.
499
507
.
72.
Li
,
K. W.
,
Wu
,
H. H.
, and
Lin
,
Y.-C.
,
2006
, “
The Effect of Shoe Sole Tread Groove Depth on the Friction Coefficient with Different Tread Groove Widths, Floors and Contaminants
,”
Appl. Ergon.
,
37
(
6
), pp.
743
748
.
You do not currently have access to this content.