Abstract

The broaching process is a heavy-duty and highly efficient metal-cutting technique. The heavy load encounters significant thermal and mechanical stresses on the tool during broaching, resulting in considerable friction within the tool–chip contact area. The friction adversely affects both workpiece quality and tool life. To address this issue, laser technology is utilized in this study to create three distinct textures on the rake face of the broach. Subsequently, an innovative rotary covering device is developed to cover the solid lubricant (copper) to both surfaces and grooves of the cutting tool. A broaching test is carried out to evaluate the impact of different textures and copper on-chip deformation. The findings demonstrate that employing a stripe-textured broach reduces the chip deformation coefficient by 16.1% compared to its nontextured counterpart. The tool surface covered with copper reduces the chip deformation coefficient by 7.7%. Copper not only reduces surface defects but also forms a lubricating film during cutting operations, thereby serving as an effective solid lubricant. The synergistic interaction between texture and copper enhances heat dissipation during cutting processes, consequently reducing temperatures within the tool–chip contact area. The temperature reduction alleviates plastic deformation in localized regions of the workpiece, resulting in narrower burrs. Therefore, using rotary friction for covering copper onto the rake face of a broaching tool represents a straightforward yet cost-effective strategy for optimizing frictional conditions and enhancing cutting performance.

References

1.
Qin
,
X. D.
,
Gao
,
Y. H.
,
Kang
,
P. F.
,
Li
,
S. P.
,
Li
,
H.
,
Zhao
,
Q.
, and
Sun
,
A. X.
,
2024
, “
Research on the Influence of Cutting Thickness on CFRP Material Removal Behavior Considering Tool Wear
,”
J. Mater. Res. Technol.
,
29
, pp.
4018
4035
.
2.
Khlifi
,
H.
,
Abdellaoui
,
L.
, and
Sai
,
W. B.
,
2019
, “
An Equivalent Geometry Model for Turning Tool with Nose and Edge Radii
,”
Int. J Adv. Manuf. Technol.
,
103
(
9–12
), pp.
4233
4251
.
3.
Singh
,
S. A.
,
Priyadarshi
,
S.
, and
Tandon
,
P.
,
2021
, “
Exploration of Appropriate Tool Material and Lubricant for Elevated Temperature Incremental Forming of Aluminium Alloy
,”
Int. J. Precis. Eng. Manuf.
,
22
(
2
), pp.
217
225
.
4.
Gajrani
,
K. K.
,
Suvin
,
P. S.
,
Kailas
,
S. V.
,
Rajurkar
,
K. P.
, and
Sankar
,
M. R.
,
2021
, “
Machining of Hard Materials Using Textured Tool With Minimum Quantity Nano-Green Cutting Fluid
,”
CIRP J. Manuf. Sci. Technol.
,
35
, pp.
410
421
.
5.
Siju
,
A. S.
, and
Waigaonkar
,
S. D.
,
2021
, “
Effects of Rake Surface Texture Geometries on the Performance of Single-Point Cutting Tools in Hard Turning of Titanium Alloy
,”
J. Manuf. Processes
,
69
, pp.
235
252
.
6.
Zhang
,
S.
,
Yan
,
Z.
,
Liu
,
Z.
,
Jiang
,
Y.
,
Sun
,
H.
, and
Wu
,
S.
,
2023
, “
Experimental and Numerical Study of the Mixed Lubrication Considering Boundary Film Strength
,”
Materials
,
16
(
3
), p.
1035
.
7.
Balaji
,
P.
,
Rajan
,
B. S.
,
Sathickbasha
,
K.
,
Sethupathi
,
P. B.
, and
Magadevan
,
D.
,
2024
, “
The Significance of Low and High Temperature Solid Lubricants for Brake Friction Applications and Their Tribological Investigation
,”
Tribol. Int.
,
191
, p.
109109
.
8.
Kumar
,
R.
,
Hussainova
,
I.
,
Antonov
,
M.
,
Maurya
,
H. S.
, and
Ripoll
,
M. R.
,
2024
, “
Temperature-Induced Wear Micro-Mechanism Transition in Additively Deposited Nickel Alloys With Different Solid Lubricants
,”
Wear
,
552–553
, p.
205452
.
9.
Ye
,
F. X.
,
Lou
,
Z.
,
Wang
,
Y. H.
, and
Liu
,
W. S.
,
2022
, “
Wear Mechanism of Ag as Solid Lubricant for Wide Range Temperature Application in Micro-Beam Plasma Cladded Ni60 Coatings
,”
Tribol. Int.
,
167
, p.
107402
.
10.
Tan
,
H.
,
Guo
,
Y. B.
,
Wang
,
D. G.
, and
Cui
,
Y. J.
,
2022
, “
The Development of a Cu@ Graphite Solid Lubricant With Excellent Anti-Friction and Wear Resistant Performances in Dry Condition
,”
Wear
,
488
, p.
204181
.
11.
Agarwal
,
V.
, and
Agarwal
,
S.
,
2021
, “
Performance Profiling of Solid Lubricant for Eco-Friendly Sustainable Manufacturing
,”
J. Manuf. Processes
,
64
, pp.
294
305
.
12.
Rosenkranz
,
A.
,
Grützmacher
,
P. G.
,
Gachot
,
C.
, and
Costa
,
H. L.
,
2019
, “
Surface Texturing in Machine Elements—A Critical Discussion for Rolling and Sliding Contacts
,”
Adv. Eng. Mater.
,
21
(
8
), p.
1900194
.
13.
Bibeye Jahaziel
,
R.
,
Krishnaraj
,
V.
,
Sudhagar
,
S.
, and
Geetha Priyadarshini
,
B.
,
2023
, “
Improving Dry Machining Performance of Surface Modified Cutting Tools Through Combined Effect of Texture and TiN-WS2 Coating
,”
J. Manuf. Processes
,
85
, pp.
101
108
.
14.
Prasad
,
K. N.
, and
Ismail
,
S.
,
2022
, “
Machining Performance of Protruded Textured High-Speed Steel Cutting Tool Under Drv Turning Operator
,”
Mater. Today: Proc.
,
66
(
Part 4
), pp.
2115
2123
.
15.
Wu
,
F. H.
,
Zhang
,
N.
,
Peng
,
W. X.
,
Sun
,
Y. B.
,
Li
,
X.
, and
Wang
,
Z. H.
,
2023
, “
A Novel Hybrid Micro-Texture for Improving the Wear Resistance of PCD Tools on Cutting SiCp/Al Composites
,”
J. Manuf. Processes
,
101
, pp.
930
942
.
16.
Ge
,
F.
,
Yu
,
Z.
,
Lia
,
Y.
,
Wang
,
X.
,
Wu
,
Q.
,
Yang
,
S.
, and
Xu
,
J.
,
2023
, “
Tool-Chip Contact Characteristics During Micro-Cutting of Compacted Graphite Iron (CGI) With Textured Tools
,”
J. Manuf. Processes
,
99
, pp.
592
604
.
17.
Ni
,
J.
,
Li
,
B.
,
Xu
,
J.
, and
Li
,
L.
,
2016
, “
Investigation on Broaching Performance and Unloading Mechanism of Micro-Textured Broach
,”
Int. J. Adv. Manuf. Technol.
,
86
(
9–12
), pp.
2449
2458
.
18.
Rosenkranz
,
A.
,
Costa
,
H. L.
,
Baykara
,
M. Z.
, and
Martini
,
A.
,
2021
, “
Synergetic Effects of Surface Texturing and Solid Lubricants to Tailor Friction and Wear–A Review
,”
Tribol. Int.
,
155
, p.
106792
.
19.
Divya
,
C.
,
Suvarna
,
R. L.
, and
Singaravel
,
B.
,
2021
, “
Experimental Investigation on Solid Lubricant Supply Methodology in Turning Process
,”
Mater. Manuf. Processes
,
36
(
15
), pp.
1781
1788
.
20.
Meng
,
X. F.
,
Zhang
,
K. D.
,
Guo
,
X. H.
,
Wang
,
C. D.
, and
Sun
,
L. N.
,
2021
, “
Preparation of Micro-Textures on Cemented Carbide Substrate Surface by Plasma-Assisted Laser Machining to Enhance the PVD Tool Coatings Adhesion
,”
J. Mater. Process. Technol.
,
288
, p.
116870
.
21.
Jianxin
,
D.
,
Ze
,
W.
,
Yunsong
,
L.
,
Ting
,
Q.
, and
Jie
,
C.
,
2012
, “
Performance of Carbide Tools With Textured Rake-Face Filled With Solid Lubricants in Dry Cutting Processes
,”
Int. J. Refract. Met. Hard Mater.
,
30
(
1
), pp.
164
172
.
22.
Siddiqui
,
T. U.
, and
Singh
,
S. K.
,
2021
, “
Design, Fabrication and Characterization of a Self-Lubricated Textured Tool in Dry Machining
,”
Mater. Today: Proc.
,
41
(
Part 4
), pp.
863
869
.
23.
Feng
,
K.
,
Ni
,
J.
,
Zhang
,
H.
,
Lu
,
D.
,
Chen
,
Z.
, and
He
,
Q.
,
2022
, “
Assessment of Textured Broach Lubricated With Carbon Fiber and Calcium Sulfonate Composite Grease
,”
J. Manuf. Processes
,
83
, pp.
536
546
.
24.
Obikawa
,
T.
,
Kamio
,
A.
,
Takaoka
,
H.
, and
Osada
,
A.
,
2011
, “
Micro-Texture at the Coated Tool Face for High Performance Cutting
,”
Int. J. Mach. Tool Manuf.
,
51
(
12
), pp.
966
972
.
25.
Alvi
,
S.
,
Milczarek
,
M.
,
Jarzabek
,
D. M.
,
Hedman
,
D.
,
Kohan
,
M. G.
,
Levintant-Zayonts
,
N.
,
Vomiero
,
A.
, and
Akhtar
,
F.
,
2022
, “
Enhanced Mechanical, Thermal and Electrical Properties of High-Entropy HfMoNbTaTiVWZr Thin Film Metallic Glass and Its Nitrides
,”
Adv. Eng. Mater.
,
24
(
9
), p.
2101626
.
26.
Shaw
,
M. C.
,
1984
,
Metal Cutting Principles
,
Oxford University Press
,
New York
, pp.
20
60
.
27.
Zhao
,
W.
,
Gong
,
L.
,
Ren
,
F.
,
Li
,
L.
,
Xu
,
Q.
, and
Khan
,
A. M.
,
2018
, “
Experimental Study on Chip Deformation of Ti-6Al-4V Titanium Alloy in Cryogenic Cutting
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
4021
4027
.
28.
Koshy
,
P.
, and
Tovey
,
J.
,
2011
, “
Performance of Electrical Discharge Textured Cutting Tools
,”
CIRP Ann.
,
60
(
1
), pp.
153
156
.
29.
Lee
,
E. H.
, and
Shaffer
,
B. W.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME J. Appl. Mech.
,
18
(
4
), pp.
405
413
.
30.
Padgurskas
,
J.
,
Rukuiza
,
R.
,
Prosyčevas
,
I.
, and
Kreivaitis
,
R.
,
2013
, “
Tribological Properties of Lubricant Additives of Fe, Cu and Co Nanoparticles
,”
Tribol. Int.
,
60
, pp.
224
232
.
You do not currently have access to this content.