Abstract

This study investigates the effects of different floor surfaces on slip safety in public service buildings (PSBs) with heavy pedestrian traffic. The K-means clustering method is used to classify various floor types and slip safety risks. The dynamic friction coefficient (DCOF) for floor coverings, such as natural stone, ceramic, laminate, and PVC, was measured in both dry and wet conditions across 30 public institutions. These measurements were obtained using the GMG 200 and WESSEX S885 Pendulum testers, providing a comprehensive assessment of the slip resistance of these surfaces. The machine learning models employed in the study were XGBoost, K-Nearest Neighbors (KNN), and Support Vector Classifier (SVC). The models were evaluated using fivefold cross-validation. The analysis revealed that the most significant parameter in DCOF predictions for the XGBoost model was environmental conditions (EC). Performance analysis showed that the SVC model achieved the highest F1 score (0.75 ± 0.01) and AUC value (0.83), outperforming the other models. Additionally, DCOF values from slip tests were grouped into five clusters using the K-means method, and a slip safety risk scale was developed. Statistically significant differences were observed in DCOF values based on usage areas, environmental conditions, test methods, and surface materials. For instance, hospital floors were found to be generally safe in dry conditions but posed a risk in wet conditions. Based on these findings, actionable safety measures were suggested, such as applying antislip coatings in high-risk areas, selecting flooring materials with higher DCOF values for moisture-prone environments, and implementing regular slip resistance testing to maintain safety standards. In conclusion, this study demonstrates that machine learning models can effectively assess the slip resistance of floor surfaces. The findings offer valuable guidance for construction industry professionals and researchers in improving safety measures and minimizing slip risks. Future research with larger datasets and diverse conditions could enhance the understanding of this issue and further improve model performance.

References

1.
Shahraki
,
A. A.
,
2021
, “
Urban Planning for Physically Disabled People's Needs With Case Studies
,”
Spatial Inf. Res.
,
29
(
2
), pp.
173
184
.
2.
Sáez-Pérez
,
M. P.
, and
Marín-Nicolás
,
J.
,
2023
, “
Design of a Support Tool to Improve Accessibility in Heritage Buildings—Application in Case Study for Public Use
,”
Buildings
,
13
(
10
), p.
2491
.
3.
Stanojević
,
A.
, and
Keković
,
A.
,
2019
, “
Functional and Aesthetic Transformation of Industrial Into Housing Spaces
,”
Facta Univ. Series: Archit. Civ. Eng.
,
17
(
4
), pp.
401
416
.
4.
Arslan
,
M.
, and
Erkan
,
I.
,
2020
, “
A Model for Evaluating the User Satisfaction of Human Movements on Stairs Through the Ergonomic Design Approach
,”
Theor. Issues Ergon. Sci.
,
22
(
6
), pp.
651
672
.
5.
Vesela
,
L.
,
2019
, “
Staircase-Dimensions of Stair Steps and Their Deviations of Geometrical Accuracy
,”
IOP Conf. Ser.: Mater. Sci. Eng. F
,
471
(
2
), p.
022012
.
6.
Sarkar
,
S.
,
Raj
,
R.
,
Vinay
,
S.
,
Maiti
,
J.
, and
Pratihar
,
D. K.
,
2019
, “
An Optimization-Based Decision Tree Approach for Predicting Slip-Trip-Fall Accidents at Work
,”
Saf. Sci.
,
118
, pp.
57
69
.
7.
Deix
,
K.
, and
Tutic
,
S.
,
2023
, “
Determination of the Slip Resistance of Interspersed Synthetic Resin Flooring With a Convolutional Neural Network
,”
J. Build. Eng.
,
76
, p.
106721
.
8.
Yu
,
L. X.
, and
Hon
,
C. Y.
,
2020
, “
Safety Climate Within Ontario Restaurants
,”
Prof. Saf.
,
65
(
11
), pp.
39
44
.
9.
Weber
,
A.
,
Nickel
,
P.
,
Hartmann
,
U.
,
Friemert
,
D.
, and
Karamanidis
,
K.
,
2020
, “
Contributions of Training Programs Supported by VR Techniques to the Prevention of STF Accidents
,”
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Posture, Motion and Health: 11th International Conference, DHM 2020, Held as Part of the 22nd HCI International Conference, HCII 2020
, Proceedings, Part I 22,
Springer International Publishing
,
Copenhagen, Denmark
,
Jul. 19–24
, pp.
276
290
.
10.
Larue
,
G. S.
,
Popovic
,
V.
,
Legge
,
M.
,
Brophy
,
C.
, and
Blackman
,
R.
,
2021
, “
Safe Trip: Factors Contributing to Slip, Trip and Fall Risk at Train Stations
,”
Appl. Ergon.
,
92
, p.
103316
.
11.
Sato
,
T.
,
Nakajima
,
M.
,
Murano
,
R.
,
Kato
,
M.
, and
Nakajima
,
K.
,
2022
, “
Relationship of Floor Material and Fall Risk Assessment During Descending Stairs
,”
Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021). IEA 2021. Lecture Notes in Networks and Systems, Vol. 223
,
N. L.
Black
,
W. P.
Neumann
, and
I.
Noy
, eds.,
Springer
,
Cham
, pp.
171
174
.
12.
Namdari
,
N.
,
Mohammadian
,
B.
,
Jafari
,
P.
,
Mohammadi
,
R.
,
Sojoudi
,
H.
,
Ghasemi
,
H.
, and
Rizvi
,
R.
,
2020
, “
Advanced Functional Surfaces Through Controlled Damage and Instabilities
,”
Mater. Horiz.
,
7
(
2
), pp.
366
396
.
13.
Çoşkun
,
G.
,
Sarıışık
,
G.
, and
Sarıışık
,
A.
,
2016
, “
Classification of Parameters Affecting Slip Safety of Limestones
,”
Cogent Eng.
,
3
(
1
), p.
1217821
.
14.
Coşkun
,
G.
, and
Sarıışık
,
G.
,
2020
, “
Analysis of Slip Safety Risk by Portable Floor Slipperiness Tester in State Institutions
,”
J. Build. Eng.
,
27
, p.
100953
.
15.
Enkhjargal
,
O. E.
, and
Way Li
,
K.
,
2019
, “
Subjective Ratings of Floor Slippery on Common Indoor and Outdoor Floors
,”
Int. J. Eng. Technol.
,
11
(
4
), pp.
241
244
.
16.
Li
,
K. W.
,
Chen
,
Y.
,
Zou
,
F.
,
Li
,
N.
, and
Duan
,
T.
,
2019
, “
Perception of Risk of Tripping Under Lighting and Obstacle Conditions
,”
Hum. Factors Ergon. Manuf. Serv. Ind.
,
29
(
6
), pp.
529
536
.
17.
Khaday
,
S.
, and
Li
,
K. W.
,
2019
, “
Friction Measurement on Common Floor Using a Horizontal Pull Slip Meter
,”
Int. J. Environ. Sci. Dev.
,
10
(
9
), pp.
275
279
.
18.
Chang
,
W. R.
,
Li
,
K. W.
,
Huang
,
Y. H.
,
Filiaggi
,
A.
, and
Courtney
,
T. K.
,
2006
, “
Objective and Subjective Measurements of Slipperiness in Fast-Food Restaurants in the USA and Their Comparison With the Previous Results Obtained in Taiwan
,”
Saf. Sci.
,
44
(
10
), pp.
891
903
.
19.
Sariisik
,
A.
,
2009
, “
Safety Analysis of Slipping Barefoot on Marble Covered Wet Areas
,”
Saf. Sci.
,
47
(
10
), pp.
1417
1428
.
20.
Terjék
,
A.
, and
Dudás
,
A.
,
2018
, “
Ceramic Floor Slipperiness Classification—A New Approach for Assessing Slip Resistance of Ceramic Tiles
,”
Constr. Build. Mater.
,
164
, pp.
809
819
.
21.
Barreca
,
F.
,
Cardinali
,
G.
, and
Fichera
,
C. R.
,
2015
, “
Assessment of Flooring Slipperiness for Food Industry Buildings
,”
Agric. Eng. Int.: CIGR J.
,
17
(
2
), pp.
23
30
.
22.
Çoşkun
,
G.
, and
Bendak
,
S.
,
2023
, “
Safety of Hospital Floor Coverings: A Mixed Method Study
,”
Saf. Sci.
,
163
, p.
106145
.
23.
Norlander
,
A.
,
Miller
,
M.
, and
Gard
,
G.
,
2015
, “
Perceived Risks for Slipping and Falling at Work During Wintertime and Criteria for a Slip-Resistant Winter Shoe Among Swedish Outdoor Workers
,”
Saf. Sci.
,
73
, pp.
52
61
.
24.
Yamaguchi
,
T.
,
Umetsu
,
T.
,
Ishizuka
,
Y.
,
Kasuga
,
K.
,
Ito
,
T.
,
Ishizawa
,
S.
, and
Hokkirigawa
,
K.
,
2012
, “
Development of New Footwear Sole Surface Pattern for Prevention of Slip-Related Falls
,”
Saf. Sci.
,
50
(
4
), pp.
986
994
.
25.
Jhou
,
S. Y.
,
Hsu
,
W. C.
, and
Hsu
,
C. C.
,
2020
, “
A New Numerical Simulation Process for Footwear Slip Resistance Analysis
,”
Future Trends in Biomedical and Health Informatics and Cybersecurity in Medical Devices: Proceedings of the International Conference on Biomedical and Health Informatics, ICBHI 2019
,
Springer International Publishing
,
Taipei, Taiwan
,
Apr. 17–20
, pp.
50
56
.
26.
Çoşkun
,
G.
,
2018
, “
A New Slip Safety Risk Scale of Natural Stones With Statistical K-Means Clustering Analysis
,”
Arabian J. Geosci.
,
11
(
24
), p.
1
.
27.
Sudol
,
E.
,
Malek
,
M.
,
Jackowski
,
M.
,
Czarnecki
,
M.
, and
Strąk
,
C.
,
2021
, “
What Makes a Floor Slippery? A Brief Experimental Study of Ceramic Tiles Slip Resistance Depending on Their Properties and Surface Conditions
,”
Materials
,
14
(
22
), p.
7064
.
28.
Lau
,
K.
,
Yamaguchi
,
T.
,
Shibata
,
K.
,
Nishi
,
T.
,
Fernie
,
G.
, and
Fekr
,
A. R.
,
2024
, “
Machine Learning Prediction of Footwear Slip Resistance on Glycerol-Contaminated Surfaces: A Pilot Study
,”
Appl. Ergon.
,
117
, p.
104249
.
29.
German Institute for Standardization (DIN)
,
2014
,
Prüfung von Bodenbelägen—Bestimmung der Rutschhemmenden Eigenschaft—Verfahren zur Messung des Gleitreibungskoeffizienten
, Standard No. DIN 51131: 2014,
German Institute for Standardization (DIN)
,
Berlin, Germany
.
30.
Turkish Standards Institute (TSI)
,
2004
,
Doğal Taşlar Deney Metotları—Pandül Deney Donanımıyla Kayma Direncinin Tayini
, Standard No. TS EN 14231: 2004,
Turkish Standards Institute (TSI)
,
Ankara, Turkey
.
31.
Zamani Joharestani
,
M.
,
Cao
,
C.
,
Ni
,
X.
,
Bashir
,
B.
, and
Talebiesfandarani
,
S.
,
2019
, “
PM2.5 Prediction Based on Random Forest, XGBoost, and Deep Learning Using Multisource Remote Sensing Data
,”
Atmosphere
,
10
(
7
), p.
373
.
32.
Xu
,
P.
,
Ji
,
X.
,
Li
,
M.
, and
Lu
,
W.
,
2023
, “
Small Data Machine Learning in Materials Science
,”
npj Comput. Mater.
,
9
(
1
), p.
42
.
33.
Nick
,
T. G.
, and
Campbell
,
K. M.
,
2007
, “Logistic Regression,”
Topics in Biostatistics. Methods in Molecular Biology
, vol. 404.
Springer
,
W. T.
Ambrosius
, ed., Humana Press,
New York
, pp.
273
301
.
34.
Boateng
,
E. Y.
, and
Abaye
,
D. A.
,
2019
, “
A Review of the Logistic Regression Model With Emphasis on Medical Research
,”
J. Data Anal. Inf. Process.
,
7
(
4
), pp.
190
200
.
35.
Reid
,
S.
, and
Grudic
,
G.
,
2009
, “
Regularized Linear Models in Stacked Generalization
,” Multiple Classifier Systems. MCS 2009. Lecture Notes in Computer Science, vol 5519,
J. A.
Benediktsson
J.
Kittler
, and
F.
Roli
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
112
121
.
36.
Peralez-González
,
C.
,
Pérez-Rodríguez
,
J.
, and
Durán-Rosal
,
A. M.
,
2023
, “
Boosting Ridge for the Extreme Learning Machine Globally Optimised for Classification and Regression Problems
,”
Sci. Rep.
,
13
(
1
), p.
11809
.
37.
Kramer
,
O.
,
2013
, “K-Nearest Neighbors,”
Dimensionality Reduction With Unsupervised Nearest Neighbors
,
Springer
,
New York
, pp.
13
23
.
38.
Pan
,
Z.
,
Wang
,
Y.
, and
Pan
,
Y.
,
2020
, “
A New Locally Adaptive K-Nearest Neighbor Algorithm Based on Discrimination Class
,”
Knowledge-Based Syst.
,
204
, p.
106185
.
39.
Awad
,
M.
, and
Khanna
,
R.
,
2015
, “Support Vector Machines for Classification,”
Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers
,
Springer
,
New York
, pp.
39
66
.
40.
Hussain
,
S. F.
,
2019
, “
A Novel Robust Kernel for Classifying High-Dimensional Data Using Support Vector Machines
,”
Expert Syst. Appl.
,
131
, pp.
116
131
.
41.
Kavrin
,
D.
, and
Subbotin
,
S.
,
2020
, “Bagging-Based Instance Selection for Instance-Based Classification,”
CMIS
, pp.
769
783
.
42.
Sarang
,
P.
,
2023
, “Ensemble: Bagging and Boosting: Improving Decision Tree Performance by Ensemble Methods,”
Thinking Data Science: A Data Science Practitioner's Guide
,
Springer International Publishing
, pp.
97
129
.
43.
Sharma
,
S.
,
Gupta
,
V.
,
Mudgal
,
D.
, and
Srivastava
,
V.
,
2024
, “
Machine Learning for Forecasting the Biomechanical Behavior of Orthopedic Bone Plates Fabricated by Fused Deposition Modeling
,”
Rapid Prototyp. J.
,
30
(
3
), pp.
441
459
.
44.
Ali
,
J.
,
Khan
,
R.
,
Ahmad
,
N.
, and
Maqsood
,
I.
,
2012
, “
Random Forests and Decision Trees
,”
Int. J. Comput. Sci. Issues (IJCSI)
,
9
(
5
), p.
272
.
45.
Pham
,
K.
,
Kim
,
D.
,
Park
,
S.
, and
Choi
,
H.
,
2021
, “
Ensemble Learning-Based Classification Models for Slope Stability Analysis
,”
Catena
,
196
, p.
104886
.
46.
Hair
,
J. F.
,
Black
,
W. C.
,
Babin
,
B. J.
, and
Anderson
,
R. E.
,
2010
,
Multivariate Data Analysis
, 7th ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
47.
Vattani
,
A.
,
2011
, “
K-Means Requires Exponentially Many Iterations Even in the Plane
,”
Discrete Comput. Geom.
,
45
(
4
), pp.
596
616
.
48.
Kim
,
I. J.
,
2018
, “
Investigation of Floor Surface Finishes for Optimal Slip Resistance Performance
,”
Saf. Health Work
,
9
(
1
), pp.
17
24
.
49.
Khaday
,
S.
,
Li
,
K. W.
,
Peng
,
L.
, and
Chen
,
C. C.
,
2021
, “
Relationship Between Friction Coefficient and Surface Roughness of Stone and Ceramic Floors
,”
Coatings
,
11
(
10
), p.
1254
.
50.
Kim
,
I. J.
,
2023
, “
Measurement of Traction Properties of Ceramic Tiles and Its Attention for Preventing Pedestrian Falls
,”
Case Stud. Constr. Mater.
,
19
, p.
e02322
.
51.
Sariisik
,
A.
,
Sarıışık
,
G.
, and
Akdaş
,
H.
,
2012
, “
Slip Analysis of Surface-Processed Limestones
,”
Proc. Inst. Civ. Eng.-Constr. Mater.
,
165
(
5
), pp.
279
296
.
52.
Sariisik
,
A.
,
Akdas
,
H.
,
Sarıışık
,
G.
, and
Coskun
,
G.
,
2011
, “
Slip Safety Analysis of Differently Surface Processed Dimension Marbles
,”
J. Test. Eval.
,
39
(
5
), pp.
908
917
.
53.
Çoşkun
,
G.
,
Sarıışık
,
G.
, and
Sarıışık
,
A.
,
2017
, “
Slip Safety Risk Analysis of Surface Properties Using the Coefficients of Friction of Rocks
,”
Int. J. Occup. Saf. Ergon.
,
25
(
3
), pp.
1
15
.
54.
Waluś
,
K. J.
,
Warguła
,
Ł
,
Wieczorek
,
B.
, and
Krawiec
,
P.
,
2022
, “
Slip Risk Analysis on the Surface of Floors in Public Utility Buildings
,”
J. Build. Eng.
,
54
, p.
104643
.
55.
Jo
,
H. H.
,
Yuk
,
H.
,
Kim
,
Y. U.
,
Jin
,
D.
,
Jeong
,
S. G.
, and
Kim
,
S.
,
2024
, “
Evaluation of Particle Generation Due to Deterioration of Flooring in Schools
,”
Environ. Pollut.
,
344
, p.
123340
.
56.
Warguła
,
Ł
,
Wieczorek
,
B.
,
Krystofiak
,
T.
, and
Sydor
,
M.
,
2024
, “
Impact of Surface Finishing Technology on Slip Resistance of Oak Lacquer Wood Floorboards With Distinct Gloss Levels
,”
Wood Mater. Sci. Eng.
,
19
(
6
), pp.
1
10
.
57.
Iraqi
,
A.
,
Vidic
,
N. S.
,
Redfern
,
M. S.
, and
Beschorner
,
K. E.
,
2020
, “
Prediction of Coefficient of Friction Based on Footwear Outsole Features
,”
Appl. Ergon.
,
82
, p.
102963
.
58.
Beschorner
,
K. E.
,
Nasarwanji
,
M.
,
Deschler
,
C.
, and
Hemler
,
S. L.
,
2024
, “
Prospective Validity Assessment of a Friction Prediction Model Based on Tread Outsole Features of Slip-Resistant Shoes
,”
Appl. Ergon.
,
114
, p.
104110
.
59.
Moghaddam
,
S. R. M.
,
Acharya
,
A.
,
Redfern
,
M. S.
, and
Beschorner
,
K. E.
,
2018
, “
Predictive Multiscale Computational Model of Shoe-Floor Coefficient of Friction
,”
J. Biomech.
,
66
, pp.
145
152
.
60.
Twomey
,
J. M.
,
Smith
,
A. E.
, and
Redfern
,
M. S.
,
1995
, “
A Predictive Model for Slip Resistance Using Artificial Neural Networks
,”
IIE Trans.
,
27
(
3
), pp.
374
381
.
61.
Lau
,
K.
,
Fernie
,
G.
, and
Roshan Fekr
,
A.
,
2023
, “
A Novel Method to Predict Slip Resistance of Winter Footwear Using a Convolutional Neural Network
,”
Footwear Sci.
,
15
(
3
), pp.
219
229
.
62.
Malviya
,
A.
,
Gupta
,
S.
,
Chatterjee
,
S.
, and
Chanda
,
A.
,
2023
, “
Development of a Novel Biomedical Device for Shoe Traction Safety Characterization
,”
J. Eng. Res.
,
12
(
1
), pp.
268
274
.
You do not currently have access to this content.