Graphical Abstract Figure

Data acquisition and CNN-LSTM architecture

Graphical Abstract Figure

Data acquisition and CNN-LSTM architecture

Close modal

Abstract

Effective and precise prediction of tool wear plays a key role in improving machining efficiency, and product quality and reducing production cost. The majority of earlier studies have depended on limited experimental data, which may not be sufficient to estimate tool wear and surface quality. Aiming at these issues, the present study proposed a convolutional neural network (CNN)-long short-term memory (LSTM) hybrid deep neural network model that directly utilizes heterogeneous data including timely captured tool images, working conditions, vibration data, surface roughness, flank wear length, and wear depth. First, experiments were conducted on AISI D2 steel at three levels of spindle speed and feed/tooth, and experimental results for wear length, wear depth, surface roughness, and vibration signals were collected. The time domain vibration signals were processed with a fast Fourier transformer and converted to the frequency domain, and 13 and 5 features were extracted from the time and frequency domain, respectively, and integrated with the heterogeneous data. Second, tool images were annotated using Roboflow software, and wear region information was collected using YOLOv8 and added to heterogeneous data. Third, the CNN-LSTM network was trained with heterogeneous data containing spatial and time-dependent features. The performance and accuracy of the proposed methodology were validated using experimental data collected at different working conditions. The results show that the CNN-LSTM model effectively predicted the tool wear length on the flank, with the root mean square error (RMSE) value of 0.219 mm, and the determination coefficient R2 value of 0.974; wear depth with the RMSE value of 0.018 mm and R2 value of 0.943; surface roughness with the RMSE value of 0.216 μm and R2 value of 0.956. The proposed methodology has significance in metal-cutting applications and provides a solution to predict tool conditions and surface quality accurately.

References

1.
Yang
,
Y.
,
Guo
,
Y.
,
Huang
,
Z.
,
Chen
,
N.
,
Li
,
L.
,
Jiang
,
Y.
, and
He
,
N.
,
2014
, “
Research on the Milling Tool Wear and Life Prediction by Establishing an Integrated Predictive Model
,”
Measurement
,
145
, pp.
178
189
.
2.
Cheng
,
Y.
,
Lu
,
M.
,
Gai
,
X.
,
Guan
,
R.
,
Zhou
,
S.
, and
Xue
,
J.
,
2024
, “
Research on Multi-Signal Milling Tool Wear Prediction Method Based on GAF-ResNext
,”
Robot. Comput. Integr. Manuf.
,
85
, p.
102634
.
3.
Yan
,
S.
,
Sui
,
L.
,
Wang
,
S.
, and
Sun
,
Y.
,
2023
, “
ON-Line Tool Wear Monitoring Under Variable Milling Conditions Based on a Condition-Adaptive Hidden Semi-Markov Model (CAHSMM)
,”
Mech. Syst. Signal. Process.
,
200
, p.
110644
.
4.
Li
,
X.
,
Liu
,
X.
,
Yue
,
C.
,
Liang
,
S. Y.
, and
Wang
,
L.
,
2022
, “
Systematic Review on Tool Breakage Monitoring Techniques in Machining Operations
,”
Int. J. Mach. Tools Manuf.
,
176
, p.
103882
.
5.
Prasad
,
B. S.
,
Sarcar
,
M. M. M.
, and
Ben
,
B. S.
,
2010
, “
Development of a System for Monitoring Tool Condition Using Acousto-Optic Emission Signal in Face Turning—An Experimental Approach
,”
Int. J. Adv. Manuf. Technol.
,
51
(
1-4
), pp.
57
67
.
6.
Rao
,
K. V.
,
Kumar
,
Y. P.
,
Singh
,
V. K.
,
Raju
,
L. S.
, and
Ranganayakulu
,
J.
,
2021
, “
Vibration-Based Tool Condition Monitoring in Milling of Ti-6Al-4 V Using an Optimization Model of GM(1,N) and SVM
,”
Int. J. Adv. Manuf. Technol.
,
115
(
5–6
), pp.
1931
1941
.
7.
Zhang
,
G.
,
Wang
,
Y.
,
Huo
,
Z.
,
Zheng
,
J.
, and
Zhang
,
W.
,
2024
, “
Tool Wear Induced Multimode Vibration and Multiscale Patterns in Precision Turning NAK80
,”
Wear
,
554–555
, p.
205467
.
8.
Dutta
,
S.
,
Pal
,
S. K.
,
Mukhopadhyay
,
S.
, and
Sen
,
R.
,
2013
, “
Application of Digital Image Processing in Tool Condition Monitoring: A Review
,”
CIRP J. Manuf. Sci. Tech.
,
6
(
3
), pp.
212
232
.
9.
Zhu
,
X.
,
Chen
,
G.
,
Ni
,
C.
,
Lu
,
X.
, and
Guo
,
J.
,
2024
, “
Hybrid CNN-LSTM Model Driven Image Segmentation and Roughness Prediction for Tool Condition Assessment With Heterogeneous Data
,”
Rob. Comput. Integr. Manuf.
,
90
, p.
102796
.
10.
Malhotra
,
J.
, and
Jha
,
S.
,
2021
, “
Fuzzy c-Means Clustering Based Colour Image Segmentation for Tool Wear Monitoring in Micro-Milling
,”
Precis. Eng.
,
72
, pp.
690
705
.
11.
Sun
,
Y.
,
He
,
J.
,
Gao
,
H.
,
Song
,
H.
, and
Guo
,
L.
,
2024
, “
A New Semi-Supervised Tool-Wear Monitoring Method Using Unreliable Pseudo-Labels
,”
Measurement
,
226
, p.
113991
.
12.
Manwar
,
A.
,
Varghese
,
A.
,
Bagri
,
S.
, and
Joshi
,
S. S.
,
2023
, “
Online Tool Condition Monitoring in Micromilling Using LSTM
,”
J. Intell. Manuf.
13.
Makhesana
,
M. A.
,
Bagga
,
P. J.
,
Patel
,
K. M.
,
Patel
,
H. D.
,
Balu
,
A.
, and
Khanna
,
N.
,
2024
, “
Comparative Analysis of Different Machine Vision Algorithms for Tool Wear Measurement During Machining
,”
J. Intell. Manuf.
14.
Ramadan
,
H.
,
Lachqar
,
C.
, and
Tairi
,
H.
,
2020
, “
A Survey of Recent Interactive Image Segmentation Methods
,”
Comp. Vis. Med.
,
6
(
4
), pp.
355
384
.
15.
Asadi
,
R.
,
Queguineur
,
A.
,
Wiikinkoski
,
O.
,
Mokhtarian
,
H.
,
Aihkisalo
,
T.
,
Revuelta
,
A.
, and
Ituarte
,
I. F.
,
2024
, “
Process Monitoring by Deep Neural Networks in Directed Energy Deposition: CNN-Based Detection, Segmentation, and Statistical Analysis of Melt Pools
,”
Rob. Comput. Integr. Manuf.
,
87
, p.
102710
.
16.
Yu
,
B.
,
Li
,
Z.
,
Cao
,
Y.
,
Wu
,
C.
,
Qi
,
J.
, and
Wu
,
L.
,
2024
, “
YOLO-MPAM: Efficient Real-Time Neural Networks Based on Multi-Channel Feature Fusion
,”
Expert Syst. App.
,
252
, pp.
124282
.
17.
Wang
,
D.
,
Han
,
C.
,
Wang
,
L.
,
Li
,
X.
,
Cai
,
E.
, and
Zhang
,
P.
,
2023
, “
Surface Roughness Prediction of Large Shaft Grinding via Attentional CNN-LSTM Fusing Multiple Process Signals
,”
Int. J. Adv. Manuf. Technol.
,
126
(
11-12
), pp.
4925
4936
.
18.
Shah
,
R.
,
Pai
,
N.
,
Thomas
,
G.
,
Jha
,
S.
,
Mittal
,
V.
,
Shirvni
,
K.
, and
Liang
,
H.
,
2025
, “
Machine Learning in Wear Prediction
,”
ASME J. Tribol.
,
147
(
4
), p.
040801
.
19.
Agrawal
,
V.
,
Gajrani
,
K. K.
,
Mote
,
R. G.
,
Barshilia
,
H. C.
, and
Joshi
,
S. S.
,
2022
, “
Wear Analysis and Tool Life Modeling in Micro Drilling of Inconel 718 Superalloy
,”
ASME J. Tribol.
,
144
(
10
), p.
101706
.
20.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
ImageNet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
21.
Burkov
,
A.
,
2019
,
The Hundred-Page Machine Learning Book
, Vol.
1
,
Andriy Burkov Canada
,
Quebec City, Canada.
22.
Zhou
,
J. T.
,
Zhao
,
X.
, and
Gao
,
J.
,
2019
, “
Tool Remaining Useful Life Prediction Method Based on LSTM Under Variable Working Conditions
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9-12
), pp.
4715
4726
.
23.
Yang
,
C.
,
Zhou
,
J.
,
Li
,
E.
,
Zhang
,
H.
,
Wang
,
M.
, and
Li
,
Z.
,
2022
, “
Milling Cutter Wear Prediction Method Under Variable Working Conditions Based on LRCN
,”
Int. J. Adv. Manuf. Technol.
,
121
(
3-4
), pp.
2647
2661
.
24.
Lim
,
M. L.
,
Derani
,
M. N.
,
Ratnam
,
M. M.
, and
Yusoff
,
A. R.
,
2022
, “
Tool Wear Prediction in Turning Using Workpiece Surface Profile Images and Deep Learning Neural Networks
,”
Int. J. Adv. Manuf. Technol.
,
120
(
11–12
), pp.
8045
8062
.
25.
Liang
,
J. H.
,
Gao
,
H. L.
,
Xiang
,
S.
,
Chen
,
L.
,
You
,
Z.
, and
Lei
,
Y.
2022
, “
Research on Tool Wear Morphology and Mechanism During Turning Nickel-Based Alloy GH4169 With PVD-TiAlN Coated Carbide Tool
,”
Wear
,
508-509
, pp.
204468
.
26.
Marei
,
M.
, and
Li
,
W.
,
2022
, “
Cutting Tool Prognostics Enabled by Hybrid CNN-LSTM With Transfer Learning
,”
Int. J. Adv. Manuf. Technol.
,
118
(
3-4
), pp.
817
836
.
27.
Wang
,
C.
, and
Shen
,
B.
,
2024
, “
Auxiliary Input-Enhanced Siamese Neural Network: A Robust Tool Wear Prediction Framework With Improved Feature Extraction and Generalization Ability
,”
Mech. Syst. Signal Process.
,
211
, pp.
111243
.
28.
Peng
,
D.
, and
Li
,
H.
,
2024
, “
Intelligent Monitoring of Milling Tool Wear Based on Milling Force Coefficients by Prediction of Instantaneous Milling Forces
,”
Mech. Syst. Signal Process.
,
208
, pp.
111033
.
29.
Qin
,
Y.
,
Liu
,
X.
,
Yue
,
C.
,
Wang
,
L.
, and
Gu
,
H.
,
2025
, “
A Tool Wear Monitoring Method Based on Data-Driven and Physical Output
,”
Rob. Comput. Integr. Manuf.
,
91
, pp.
102820
.
30.
Li
,
B.
,
Lu
,
Z.
,
Jin
,
X.
, and
Zhao
,
L.
,
2024
, “
Tool Wear Prediction in Milling CFRP With Different Fiber Orientations Based on Multi-Channel 1DCNN-LSTM
,”
J. Intell. Manuf.
,
35
(
6
), pp.
2547
2566
.
31.
Rao
,
K. V.
,
Murthy
,
B. S. N.
, and
Mohan Rao
,
N.
,
2015
, “
Experimental Study on Surface Roughness and Vibration of Workpiece in Boring of AISI 1040 Steels
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
229
(
5
), pp.
703
712
.
32.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Realtime Object Detection
,”
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Jun. 2016
,
Las Vegas, NV
,
IEEE
, pp.
779
788
.
33.
Zhou
,
C.
,
Wang
,
C.
,
Sun
,
D.
,
Hu
,
J.
, and
Ye
,
H.
,
2025
, “
An Automated Lightweight Approach for Detecting Dead Fish in a Recirculating Aquaculture System
,”
Aquaculture
,
594
, pp.
741433
.
34.
Gu
,
W.
,
Bai
,
S.
, and
Kong
,
L.
,
2022
, “
A Review on 2D Instance Segmentation Based on Deep Neural Networks
,”
Image Vis. Comput.
,
120
, pp.
104401
.
35.
Wang
,
S.
,
Yu
,
Z.
,
Xu
,
G.
, and
Zhao
,
F.
,
2023
, “
Research on Tool Remaining Life Prediction Method Based on CNN-LSTM-PSO
,”
IEEE Access
,
11
, pp.
80448
80464
.
36.
Airao
,
J.
,
Kishore
,
H.
, and
Chandrakant
,
K. N.
,
2023
, “
Measurement and Analysis of Tool Wear and Surface Characteristics in Micro Turning of SLM Ti6Al4 V and Wrought Ti6Al4 V
,”
Measurement
,
206
, pp.
112281
.
You do not currently have access to this content.