Graphical Abstract Figure

Powder for spraying: (a) SEM morphology of the spraying powder and (b) XRD patterns of the spraying powder

Graphical Abstract Figure

Powder for spraying: (a) SEM morphology of the spraying powder and (b) XRD patterns of the spraying powder

Close modal

Abstract

MoSi2 coatings were prepared on a 45CrNi substrate by supersonic plasma spraying (SAPS). The tribocorrosion resistance of MoSi2 coating and posttreated MoSi2 coating (P-MoSi2) in the seawater environment was analyzed. After posttreatment, some new phases such as MoO3, SiO2, and Mo9O26 are generated in the P-MoSi2 coating. The electrochemical test results indicated that the P-MoSi2 coating has lower current density and larger −βc and Rp values than MoSi2 coating in both static corrosion and tribocorrosion tests. The wear test results indicated that the posttreatment reduces the wear-rate and friction coefficient of the coating. The wear mechanisms of both coatings were described to explain the differences. Also, the mechanism of the improved tribocorrosion resistance after posttreatment was explained.

References

1.
Li
,
B.
,
Li
,
C.
,
Gao
,
Y. M.
,
Guo
,
H. J.
,
Kang
,
Y. C.
, and
Zhao
,
S. Y.
,
2019
, “
Tribological Performance of a Ni-Based Composite Coating in Artificial Seawater
,”
Coatings
,
9
(
11
), pp.
747
758
.
2.
Shan
,
L.
,
Wang
,
Y. X.
,
Zhang
,
Y. R.
,
Zhang
,
Q.
, and
Xue
,
Q. J.
,
2016
, “
Tribocorrosion Behaviors of PVD CrN Coated Stainless Steel in Seawater
,”
Wear
,
362
, pp.
97
104
.
3.
Fu
,
Y. Q.
,
Zhou
,
F.
,
Zhang
,
M. D.
,
Wang
,
Q. Z.
, and
Zhou
,
Z. F.
,
2020
, “
Structural, Mechanical and Tribocorrosion Performances of CrMoSiN Coatings With Various Mo Contents in Artificial Seawater
,”
Appl. Surf. Sci.
,
525
, p.
146629
.
4.
Wood
,
R. J. K.
,
2017
, “
Marine Wear and Tribocorrosion
,”
Wear
,
376
, pp.
893
910
.
5.
Zhang
,
Y.
,
Yin
,
X. Y.
, and
Yan
,
F. Y.
,
2016
, “
Tribocorrosion Behaviour of Type S31254 Steel in Seawater: Identification of Corrosion–Wear Components and Effect of Potential
,”
Mater. Chem. Phys.
,
179
, pp.
273
281
.
6.
Ma
,
F. L.
,
Li
,
J. L.
,
Zeng
,
Z. X.
, and
Gao
,
Y. M.
,
2018
, “
Structural, Mechanical and Tribocorrosion Behaviour in Artificial Seawater of CrN/AlN Nano-Multilayer Coatings on F690 Steel Substrates
,”
Appl. Surf. Sci.
,
428
, pp.
404
414
.
7.
Liu
,
X.
,
Zhao
,
X. Q.
,
An
,
Y. L.
,
Hou
,
G. L.
,
Li
,
S. J.
,
Deng
,
W.
,
Zhou
,
H. D.
, and
Chen
,
J. M.
,
2018
, “
Effects of Loads on Corrosion-Wear Synergism of NiCoCrAlYTa Coating in Artificial Seawater
,”
Tribol. Int.
,
118
, pp.
421
431
.
8.
Chen
,
J.
,
Zhang
,
Q.
,
Li
,
Q. A.
,
Fu
,
S. L.
, and
Wang
,
J. Z.
,
2014
, “
Corrosion and Tribocorrosion Behaviors of AISI 316 Stainless Steel and Ti6Al4V Alloys in Artificial Seawater
,”
Trans. Nonferrous Met. Soc. China
,
24
(
4
), pp.
1022
1031
.
9.
Jiang
,
J.
,
Stack
,
M. M.
, and
Neville
,
A.
,
2002
, “
Modelling the Tribo-Corrosion Interaction in Aqueous Sliding Conditions
,”
Tribol. Int.
,
35
(
10
), pp.
669
679
.
10.
Chen
,
J.
,
Wang
,
J. Z.
,
Yan
,
F. Z.
,
Zhang
,
Q.
, and
Li
,
Q. A.
,
2015
, “
Corrosion Wear Synergistic Behavior of Hastelloy C276 Alloy in Artificial Seawater
,”
Trans. Nonferrous Met. Soc. China
,
25
(
2
), pp.
661
668
.
11.
Ma
,
F. L.
,
Li
,
J. L.
,
Zeng
,
Z. X.
, and
Gao
,
Y. M.
,
2019
, “
Tribocorrosion Behavior in Artificial Seawater and Anti-Microbiologically Influenced Corrosion Properties of TiSiN-Cu Coating on F690 Steel
,”
J. Mater. Sci. Technol.
,
35
(
3
), pp.
448
459
.
12.
Totolin
,
V.
,
Pejaković
,
V.
,
Csanyi
,
T.
,
Hekele
,
O.
,
Huber
,
M.
, and
Ripoll
,
M. R.
,
2016
, “
Surface Engineering of Ti6Al4V Surfaces for Enhanced Tribocorrosion Performance in Artificial Seawater
,”
Mater. Des.
,
104
, pp.
10
18
.
13.
Jun
,
C.
,
2017
, “
Corrosion Wear Characteristics of TC4, 316 Stainless Steel, and Monel K500 in Artificial Seawater
,”
RSC Adv.
,
7
(
38
), pp.
23835
23845
.
14.
Gao
,
Z. X.
,
Ji
,
G. J.
,
Shi
,
Z. M.
, and
Wang
,
X. H.
,
2021
, “
The Tribocorrosion Behaviour of YSZ Coating Deposited on Stainless Steel Substrate in 3.5 wt% NaCl Solution
,”
Ceram. Int.
,
47
(
15
), pp.
21051
21060
.
15.
Huttunen-Saarivirta
,
E.
,
Heino
,
V.
,
Isotandon
,
E.
,
Kilpi
,
L.
, and
Ronkainen
,
H.
,
2020
, “
Tribocorrosion Behaviour of Thermally Sprayed Cermet Coatings in Paper Machine Environment
,”
Tribol. Int.
,
142
, p.
106006
.
16.
Fu
,
Y. Q.
,
Zhou
,
F.
,
Zhang
,
M. D.
,
Wang
,
Q. Z.
, and
Zhou
,
Z. F.
, “
Structure and Tribocorrosion Behavior of CrMoSiCN Nanocomposite Coating With Low C Content in Artificial Seawater
,”
Friction
,
9
(
6
), pp.
1599
1615
.
17.
Wang
,
Y.
,
Li
,
J. L.
,
Dang
,
C. Q.
,
Wang
,
Y. X.
, and
Zhu
,
Y. J.
,
2017
, “
Influence of Carbon Contents on the Structure and Tribocorrosion Properties of TiSiCN Coatings on Ti6Al4V
,”
Tribol. Int.
,
109
, pp.
285
296
.
18.
Dong
,
M. P.
,
Zhu
,
Y. B.
,
Wang
,
C. T.
,
Shan
,
L.
, and
Li
,
J. L.
,
2019
, “
Structure and Tribocorrosion Properties of Duplex Treatment Coatings of TiSiCN/Nitride on Ti6Al4V Alloy
,”
Ceram. Int.
,
45
(
9
), pp.
12461
12468
.
19.
Cheng
,
J. B.
,
Zhang
,
Q.
,
Feng
,
Y.
,
Zhao
,
S.
, and
Liang
,
X. B.
,
2019
, “
Microstructure and Sliding Wear Behaviors of Plasma-Sprayed Fe-Based Amorphous Coatings in 3.5wt% NaCl Solution
,”
J. Therm. Spray Technol.
,
28
(
5
), pp.
1049
1059
.
20.
Cheng
,
J. B.
,
Ge
,
Y. Y.
,
Wang
,
B. S.
,
Zhang
,
L. H.
,
Hu
,
X. L.
,
Hong
,
S.
,
Liang
,
X. B.
, and
Zhang
,
X. C.
,
2020
, “
Microstructure and Tribocorrosion Behavior of Al2O3/Al Composite Coatings: Role of Al2O3 Addition
,”
J. Therm. Spray Technol.
,
29
(
7
), pp.
1741
1751
.
21.
Monticelli
,
C.
,
Balbo
,
A.
, and
Zucchi
,
F.
,
2010
, “
Corrosion and Tribocorrosion Behaviour of Cermet and Cermet/Nanoscale Multilayer CrN/NbN Coatings
,”
Surf. Coat. Technol.
,
204
(
9–10
), pp.
1452
1460
.
22.
Zhou
,
W. T.
, and
Kong
,
D. J.
,
2019
, “
Corrosive Wear and Electrochemical Corrosion Behaviors of Laser Thermal Sprayed CoCrAlYTaSi Coatings in 3.5 wt.% NaCl Solution
,”
Anti-Corros. Methods Mater.
,
66
(
5
), pp.
537
543
.
23.
Wang
,
Y. X.
,
Zhang
,
J. W.
,
Zhou
,
S. G.
,
Wang
,
Y. C.
,
Wang
,
C. T.
,
Wang
,
Y. X.
,
Sui
,
Y. F.
,
Lan
,
J. B.
, and
Xue
,
Q. J.
,
2020
, “
Improvement in the Tribocorrosion Performance of CrCN Coating by Multilayered Design for Marine Protective Application
,”
Appl. Surf. Sci.
,
528
, p.
147061
.
24.
Li
,
B.
,
Gao
,
Y. M.
,
Li
,
C.
,
Guo
,
H. J.
,
Zheng
,
Q. L.
,
Li
,
Y. F.
,
Kang
,
Y. C.
, and
Zhao
,
S. Y.
,
2020
, “
Tribocorrosion Properties of NiCrAlY Coating in Different Corrosive Environments
,”
Materials
,
13
(
8
), pp.
1864
1874
.
25.
Meng
,
J.
,
Lu
,
J.
,
Wang
,
J.
, and
Yang
,
S.
,
2004
, “
Tribological Behavior of MoSi2 and Its Composites in Sliding Against Ni-Based Alloys
,”
Tribol. Lett.
,
16
(
1
), pp.
37
42
.
26.
Meng
,
J. H.
,
Lu
,
J. J.
,
Wang
,
J. B.
, and
Yang
,
S. R.
,
2005
, “
Preparation and Properties of MoSi2 Composites Reinforced by TiC, TiCN, and TiB2
,”
Mater. Sci. Eng. A
,
396
(
1–2
), pp.
277
284
.
27.
Zhang
,
H. A.
,
Gu
,
S. Y.
, and
Xie
,
N. P.
,
2011
, “
Effect of La2O3 on the Wear Behavior of MoSi2 at High Temperature
,”
J. Rare Earths
,
29
(
4
), pp.
370
373
.
28.
Yan
,
J. H.
,
Liu
,
L. F.
,
Mao
,
Z. Y.
,
Xu
,
H. M.
, and
Wang
,
Y. M.
,
2014
, “
Effect of Spraying Powders Size on the Microstructure, Bonding Strength, and Microhardness of MoSi2 Coating Prepared by Air Plasma Spraying
,”
J. Therm. Spray Technol.
,
23
(
6
), pp.
934
939
.
29.
Xu
,
W. F.
,
Niu
,
Y. R.
,
Ji
,
H.
,
Li
,
H.
,
Chang
,
C. K.
, and
Zheng
,
X. B.
,
2018
, “
Effect of Ni Addition on Microstructure and Tribological Properties of Plasma-Sprayed MoSi2 Coatings
,”
J. Therm. Spray Technol.
,
27
(
8
), pp.
1632
1642
.
30.
Xu
,
J.
,
Li
,
Z. Y.
,
Munroe
,
P.
, and
Xie
,
Z. H.
,
2014
, “
Role of Cr Additions in Enhancing Wear and Oxidation Resistance of (Mo1−XCrx)Si2 Nanocrystalline Films
,”
Ceram. Int.
,
40
(
10
), pp.
15859
15874
.
31.
Erfanmanesh
,
M.
,
Bakhshi
,
S. R.
,
Pakmanesh
,
M. R.
, and
Barekat
,
M.
,
2021
, “
Preparation and Improved Friction and Wear Performance of the Nano-MoSi2 Coating on Ni Substrate by Plasma Spraying
,”
Met. Mater. Int.
,
27
(
6
), pp.
1531
1539
.
32.
Hu
,
H. R.
,
Guo
,
Y. J.
,
Yan
,
J. H.
,
Qiu
,
J. W.
, and
Wang
,
Y.
,
2019
, “
Dry Sliding Wear Behavior of MoSi2-Mo5Si3-Mo5SiB2 Composite at Different Temperatures and Loads
,”
Wear
,
428
, pp.
237
245
.
33.
Feng
,
Z. C.
,
Liu
,
Y. F.
,
Li
,
Y.
,
Sun
,
G. B.
,
Zhang
,
Z.
, and
Shi
,
C. X.
,
2019
, “
Microstructure and High Temperature Reciprocating Sliding Wear Properties of MoSi2/TiC/γ-Ni Composite Coating In-Situ Synthesized by Co-Axial Powder Feeding Plasma Transferred Arc Cladding
,”
Tribol. Int.
,
129
, pp.
82
91
.
34.
Xu
,
J.
,
Liu
,
L. L.
,
Munroe
,
P.
,
Xie
,
Z. H.
, and
Jiang
,
Z. T.
,
2013
, “
The Nature and Role of Passive Films in Controlling the Corrosion Resistance of MoSi2-Based Nanocomposite Coatings
,”
J. Mater. Chem. A
,
1
(
35
), pp.
10281
10291
.
35.
Rau
,
J. V.
,
Teghil
,
R.
,
Ferro
,
D.
,
Generosi
,
A.
,
Albertini
,
V. R.
,
Spoliti
,
M.
, and
Barinov
,
S. M.
,
2010
, “
Deposition and Characterisation of MoSi2 Films
,”
Thin Solid Films
,
518
(
8
), pp.
2050
2055
.
36.
Alam
,
M. Z.
,
Venkataraman
,
B.
,
Sarma
,
B.
, and
Das
,
D. K.
,
2009
, “
MoSi2 Coating on Mo Substrate for Short-Term Oxidation Protection in Air
,”
J. Alloys Compd.
,
487
(
1–2
), pp.
335
340
.
37.
Wang
,
C. C.
,
Li
,
K. Z.
,
He
,
D. Y.
, and
Shi
,
X. H.
,
2020
, “
Oxidation Behavior of Plasma-Sprayed MoSi2-Yb2O3 Composite Coating at 1700 °C
,”
Ceram. Int.
,
46
(
7
), pp.
9538
9547
.
38.
Sun
,
J.
,
Li
,
T.
, and
Zhang
,
G. P.
,
2019
, “
Effect of Thermodynamically Metastable Components on Mechanical and Oxidation Properties of the Thermal-Sprayed MoSi2 Based Composite Coating
,”
Corros. Sci.
,
155
, pp.
146
154
.
39.
Pang
,
J.
,
Wang
,
W.
, and
Zhou
,
C. G.
,
2016
, “
Microstructure Evolution and Oxidation Behavior of B Modified MoSi2 Coating on Nb–Si Based Alloys
,”
Corros. Sci.
,
105
, pp.
1
7
.
40.
Wang
,
C. C.
,
Li
,
K. Z.
,
He
,
Q. C.
,
Huo
,
C. X.
, and
Shi
,
X. H.
,
2018
, “
High-Temperature Oxidation and Ablation Behavior of Plasma Sprayed LaB6-MoSi2-TiB2 Composite Coating
,”
Mater. Des.
,
152
, pp.
40
53
.
41.
Wang
,
L.
,
Fu
,
Q. G.
,
Liu
,
N. K.
, and
Shan
,
Y. C.
,
2016
, “
Supersonic Plasma Sprayed MoSi2–ZrB2 Antioxidation Coating for SiC–C/C Composites
,”
Surf. Eng.
,
32
(
7
), pp.
508
513
.
42.
Wang
,
G.
,
Jiang
,
W.
,
Bai
,
G. Z.
, and
Wu
,
L. B.
,
2003
, “
Effect of Addition of Oxides on Low-Temperature Oxidation of Molybdenum Disilicide
,”
J. Am. Ceram. Soc.
,
86
(
4
), pp.
731
734
.
43.
Hong
,
S. J.
,
Viswanathan
,
V.
,
Rea
,
K.
,
Patil
,
S.
,
Deshpande
,
S.
,
Georgieva
,
P.
,
McKechnie
,
T.
, and
Seal
,
S.
,
2005
, “
Plasma Spray Formed Near-Net-Shape MoSi2–Si3N4 Bulk Nanocomposites: Structure Property Evaluation
,”
Mater. Sci. Eng. A
,
404
(
1–2
), pp.
165
172
.
44.
Wen
,
S. H.
, and
Sha
,
J. B.
,
2019
, “
Improvement of “Pest” Resistance of MoSi2 Intermetallic Compound at 500 °C and 600 °C via Addition of B Fabricated by Spark Plasma Sintering
,”
Oxid. Met.
,
92
(
3–4
), pp.
243
257
.
45.
Feng
,
P. Z.
,
Wang
,
X. H.
,
He
,
Y. Q.
, and
Qiang
,
Y. H.
,
2009
, “
Effect of High-Temperature Preoxidation Treatment on the Low-Temperature Oxidation Behavior of a MoSi2-Based Composite at 500 °C
,”
J. Alloys Compd.
,
473
(
1–2
), pp.
185
189
.
46.
Guo
,
L. L.
,
Hu
,
X. X.
,
Tao
,
X.
,
Du
,
H. Y.
,
Guo
,
A. R.
, and
Liu
,
J. C.
,
2020
, “
Low-Temperature Oxidation Resistance of the Silica-Coated MoSi2 Powders Prepared by Sol-Gel Preoxidation Method
,”
Ceram. Int.
,
46
(
15
), pp.
23471
23478
.
47.
Wu
,
Y. D.
,
Zhang
,
G. H.
, and
Chou
,
K. C.
,
2017
, “
The Reaction Behavior of MoSi2 Powder in N2 Atmosphere at High Temperatures
,”
Ceram. Int.
,
43
(
18
), pp.
16525
16530
.
48.
Yakaboylu
,
G. A.
,
Yumak
,
T.
,
Sabolsky
,
K.
, and
Sabolsky
,
E. M.
,
2020
, “
Effect of High Temperature Preoxidation Treatment on the Oxidation Behavior of MoSi2- and WSi2-Al2O3 Composites
,”
J. Alloys Compd.
,
816
, p.
152499
.
49.
Daram
,
P.
, and
Banjongprasert
,
C.
,
2020
, “
The Influence of Post Treatments on the Microstructure and Corrosion Behavior of Thermally Sprayed NiCrMoAl Alloy Coating
,”
Surf. Coat. Technol.
,
384
, p.
125166
.
50.
Kim
,
J. M.
,
Ha
,
T. H.
,
Park
,
J. S.
, and
Kim
,
H. G.
,
2016
, “
Oxidation Resistance of Si-Coated TZM Alloy Prepared Through Combined Process of Plasma Spray and Laser Surface Melting
,”
Trans. Nonferrous Met. Soc. China
,
26
(
10
), pp.
2603
2608
.
51.
Murthy
,
T. S. R. C.
,
Basu
,
B.
,
Srivastava
,
A.
,
Balasubramaniam
,
R.
, and
Suri
,
A. K.
,
2006
, “
Tribological Properties of TiB2 and TiB2–MoSi2 Ceramic Composites
,”
J. Eur. Ceram. Soc.
,
26
(
7
), pp.
1293
1300
.
You do not currently have access to this content.