Abstract

Fretting wear refers to the damage phenomenon experienced by the mechanical components undergoing micro-amplitude relative slip at their contact region due to vibration. Titanium alloys find their extensive application in aerospace industry components such as splines and dovetail joints, where they experience fretting wear phenomenon. This research work investigates the effect of MoS2/Ti co-deposition coatings with varying Ti contents, deposited on the TC4 titanium alloy substrate using magnetron sputtering. Fretting wear tests were conducted at room temperature, 100 ℃, and 200 °C, using a specially designed fretting test fixture with a ball-on-flat contact configuration, mounted on a servo-hydraulic fatigue testing machine. The results indicated that the coating becomes denser with an increase in the Ti content. The coating exhibited the highest hardness and better anti-fretting wear performance at room temperature. However, the effect of Ti content on the fretting wear behaviors changed at elevated temperatures. At the highest Ti content coating, excessive oxide particles were found on the worn surface at elevated temperatures, inducing an abrasive effect and localized cracks. However, coatings with moderate Ti content (9.62 at%) effectively protected the substrate from significant wear at room temperature and maintained a low coefficient of friction at high temperatures without failure.

References

1.
Fouvry
,
S.
,
Paulin
,
C.
, and
Deyber
,
S.
,
2009
, “
Impact of Contact Size and Complex Gross–Partial Slip Conditions on Ti–6Al–4V/Ti–6Al–4V Fretting Wear
,”
Tribol. Int.
,
42
(
3
), pp.
461
474
.
2.
Wang
,
L.
,
Ding
,
H. Y.
,
Liu
,
A. H.
, and
Wang
,
S.
,
2017
, “
Wear Performance of TC4 Alloys in Different Tribo-Systems
,”
Rare Metal Mater. Eng.
,
46
(
9
), pp.
2449
2454
.
3.
Zhao
,
Q. Y.
,
Yu
,
T. X.
,
Pang
,
T. Y.
, and
Song
,
B. F.
,
2022
, “
Spline Wear Life Prediction Considering Multiple Errors
,”
Eng. Fail. Anal.
,
131
(
4
), p.
105804
.
4.
Zhang
,
F. T.
,
Liang
,
Y. L.
,
Wu
,
Y. Z.
,
Yin
,
C.
,
Zhang
,
J.
,
Yang
,
S.
, and
Huang
,
X.
,
2022
, “
Microstructure Evolution of a Drive Shaft Spline From an Aero-Engine Fuel Pump During Fretting Wear
,”
Mater. Res. Express
,
9
(
4
), p.
6513
.
5.
Xiao
,
L.
,
Xu
,
Y. Q.
,
Sun
,
X. W.
,
Xu
,
H.
, and
Zhang
,
L.
,
2022
, “
Experimental Investigation on the Effect of Misalignment on the Wear Failure for Spline Couplings
,”
Eng. Fail. Anal.
,
131
(
1
), p.
105755
.
6.
Fouvry
,
S.
,
Arnaud
,
P.
,
Mignot
,
A.
, and
Neubauer
,
P.
,
2017
, “
Contact Size, Frequency and Cyclic Normal Force Effects on Ti–6Al–4V Fretting Wear Processes: An Approach Combining Friction Power and Contact Oxygenation
,”
Tribol. Int.
,
113
(
1
), pp.
460
473
.
7.
Yang
,
Q.
,
Zhou
,
W. L.
,
Zhong
,
Y. N.
,
Zhang
,
X.
,
Fu
,
X.
,
Chen
,
G.
, and
Li
,
Z.
,
2018
, “
Effect of Shot-Peening on the Fretting Wear and Crack Initiation Behavior of Ti–6Al–4V Dovetail Joint Specimens
,”
J. Mater. Res. Technol.
,
107
(
1
), pp.
83
95
.
8.
Yang
,
Q.
,
Zhou
,
W. L.
,
Niu
,
Z. Q.
,
Zheng
,
X.
,
Wang
,
Q.
,
Fu
,
X.
,
Chen
,
G.
, and
Li
,
Z.
,
2018
, “
Effect of Different Surface Asperities and Surface Hardness Induced by Shot-Peening on the Fretting Wear Behavior of Ti–6Al–4V
,”
Surf. Coat. Technol.
,
349
(
1
), pp.
1098
1106
.
9.
Fridrici
,
V.
,
Fouvry
,
S.
, and
Kapsa
,
P.
,
2001
, “
Effect of Shot Peening on the Fretting Wear of Ti–6Al–4V
,”
Wear
,
250
(
1
), pp.
642
649
.
10.
Sharma
,
A.
, and
Sadeghi
,
F.
,
2024
, “
Effects of Fretting Wear on Rolling Contact Fatigue
,”
Tribol. Int.
,
192
(
1
), p.
109204
.
11.
Wang
,
Z. H.
,
Lu
,
Y. H.
,
Zhang
,
H. Y.
, and
Shoji
,
T.
,
2016
, “
Effect of Cold Rolling on the Fretting Wear Behavior and Mechanism in Inconel 600 Alloy
,”
Tribol. Trans.
,
59
(
5
), pp.
923
931
.
12.
Sun
,
D. J.
,
Wu
,
X. Q.
,
Xie
,
F. Q.
,
He
,
P.
,
Li
,
Z.
, and
He
,
J.
,
2023
, “
Fretting Wear Properties and Microstructure Evolution in Micro-Arc Oxidation Bioceramic Coating Pretreated Using Laser Remelting
,”
Ceram. Int.
,
49
(
3
), pp.
4979
4986
.
13.
Lai
,
P.
,
Zhang
,
H.
,
Zhang
,
L. F.
,
Zeng
,
Q.
,
Lu
,
J.
, and
Guo
,
X.
,
2019
, “
Effect of Micro-Arc Oxidation on Fretting Wear Behavior of Zirconium Alloy Exposed to High Temperature Water
,”
Wear
,
424
(
1
), pp.
53
61
.
14.
Fridrici
,
V.
,
Fouvry
,
S.
, and
Kapsa
,
P.
,
2003
, “
Fretting Wear Behavior of a Cu–Ni–In Plasma Coating
,”
Surf. Coat. Technol.
,
163
(
1
), pp.
429
434
.
15.
Luo
,
J.
,
Cai
,
Z. B.
,
Mo
,
J. L.
,
Peng
,
J. F.
, and
Zhu
,
M. H.
,
2015
, “
Torsional Fretting Wear Behavior of Bonded MoS2 Solid Lubricant Coatings
,”
Tribol. Trans.
,
58
(
6
), pp.
1124
1130
.
16.
Xu
,
G. Z. H.
,
Zhu
,
M. H.
,
Liu
,
J. J.
,
Zhou
,
Z.
, and
Liang
,
H.
,
2003
, “
The Effect of Pre-Treatment of Substrate on Fretting Tribological Behavior of MoS2 Coatings
,”
Wear
,
255
(
1
), pp.
246
252
.
17.
Zhou
,
J. B.
,
Zhang
,
L.
,
Ding
,
Y.
,
Chen
,
X.
, and
Cai
,
Z.
,
2021
, “
Impact Fretting Wear of MoS2/C Nanocomposite Coating With Different Carbon Contents Under Cycling low Kinetic Energy
,”
Nanomaterials
,
11
(
9
), p.
2205
.
18.
Zhuang
,
W. H.
,
Li
,
H.
,
Li
,
W.
,
Fan
,
X.
,
He
,
J.
,
Cai
,
Z.
,
Fu
,
W.
,
Zhang
,
G.
,
Wan
,
S.
, and
Zhu
,
M.
,
2019
, “
Probing Fretting Performance of DLC and MoS2 Films Under Fluid Lubrication
,”
Appl. Surf. Sci.
,
478
(
1
), pp.
661
679
.
19.
Zhang
,
Y. Y.
,
Descartes
,
S.
,
Vo
,
P.
, and
Chromik
,
R. R.
,
2016
, “
Cold-Sprayed Cu–MoS2 and Its Fretting Wear Behavior
,”
J. Therm. Spray Technol.
,
25
(
3
), pp.
473
482
.
20.
Wang
,
P.
,
Zhang
,
G. G.
,
Lu
,
Z. B.
,
Yue
,
W.
, and
Zhu
,
L.
,
2019
, “
Effect of Electric Currents on Tribological Behaviors of Ti/MoS2 Composite Film Sliding Against Aluminum
,”
Surf. Topogr. Metrol. Prop.
,
7
(
2
), p.
025014
.
21.
Weise
,
G.
,
Mattern
,
N.
,
Hermann
,
H.
,
Teresiak
,
A.
,
Bächer
,
I.
,
Brückner
,
W.
,
Bauer
,
H.-D.
, et al
,
1997
, “
Preparation, Structure and Properties of MoSx Films
,”
Thin Solid Films
,
298
(
1–2
), pp.
98
106
.
22.
Corbella
,
C.
,
Portal
,
S.
,
Kundrapu
,
M. N.
, and
Keidar
,
M.
,
2022
, “
Nanosynthesis by Atmospheric arc Discharges Excited with Pulsed-DC Power: A Review
,”
Nanotechnology
,
33
(
34
), p.
342001
.
23.
Kononov
,
A. A.
,
Castro-Arata
,
R. A.
,
Glavnaya
,
D. D.
,
Stozharov
,
V. M.
,
Dolginsev
,
D. M.
,
Saito
,
Y.
,
Fons
,
P.
,
Anisimova
,
N. I.
, and
Kolobov
,
A. V.
,
2020
, “
Polarization Processes in Thin Layers of Amorphous MoS2 Obtained by RF Magnetron Sputtering
,”
Semiconductors
,
54
(
5
), pp.
558
562
.
24.
Vierneusel
,
B.
,
Schneider
,
T.
,
Tremmel
,
S.
,
Wartzack
,
S.
, and
Gradt
,
T.
,
2013
, “
Humidity Resistant MoS2 Coatings Deposited by Unbalanced Magnetron Sputtering
,”
Surf. Coat. Technol.
,
235
(
1
), pp.
97
107
.
25.
Yin
,
J. N.
,
Yue
,
Z. F.
,
Fan
,
X. Q.
,
Zhuang
,
W.
, and
Zhu
,
M.
,
2023
, “
Study on the Effect of Counter Ball Materials on Fretting Wear Behavior of Solid Lubricating Films
,”
Wear
,
526
(
1
), p.
204957
.
26.
Mukhtar
,
S. H.
,
Wani
,
M. F.
,
Sehgal
,
R.
, and
Sharma
,
M. D.
,
2023
, “
Nano-Mechanical and Nano-Tribological Characterisation of Self-Lubricating MoS2 Nano-Structured Coating for Space Applications
,”
Tribol. Int.
,
178
(
1
), p.
108017
.
27.
Kraut
,
D.
,
Weise
,
G.
,
Olbrich
,
W.
, and
Kampschulte
,
G.
,
1993
, “
Low-Friction Composite Coating of Crxsiy MoS2 on Steel
,”
Surf. Coat. Technol.
,
60
(
1–3
), pp.
515
520
.
28.
Bhattacharya
,
R. S.
,
Rai
,
A. K.
,
Mccormick
,
A. W.
, and
Erdemir
,
A.
,
1993
, “
High-Enegry (MEV) Ion-Beam Modifications of Sputtered MoS2 Coating on Creamics
,”
Tribol. Trans.
,
36
(
4
), pp.
621
626
.
29.
Zaharin
,
H. A.
,
Ghazali
,
M. J.
,
Thachnatharen
,
N.
,
Ezzah
,
F.
,
Walvekar
,
R.
, and
Khalid
,
M.
,
2023
, “
Progress in 2D Materials Based Nanolubricants: A Review
,”
Flatchem
,
38
(
1
), p.
100485
.
30.
Teer
,
D. G.
,
Hampshire
,
J.
,
Fox
,
V.
, and
Bellido-Gonzalez
,
V.
,
1997
, “
The Tribological Properties of MoS2/Metal Composite Coatings Deposited by Closed Field Magnetron Sputtering
,”
Surf. Coat. Technol.
,
94–95
(
1–3
), pp.
572
577
.
31.
Shi
,
X.
,
He
,
P.
,
Sun
,
S.
,
Chen
,
J.
,
Beake
,
B. D.
,
Liskiewicz
,
T. W.
,
Zhang
,
X.
, and
Zhou
,
Z.
,
2022
, “
Tailoring the Corrosion and Tribological Performance of Ti-Modified MoS2-Based Films in Simulated Seawater
,”
J. Mater. Res. Technol.
,
21
(
1
), pp.
576
589
.
32.
Li
,
H.
,
Zhang
,
G.
, and
Wang
,
L.
,
2016
, “
Low Humidity-Sensitivity of MoS2/Pb Nanocomposite Coatings
,”
Wear
,
350–351
(
1
), pp.
1
9
.
33.
Sun
,
J. Y.
,
Weng
,
L. J.
,
Yu
,
D. Y.
, and
Xue
,
Q.
,
2002
, “
RF-Sputtered REMF–MoS2–Au/Au Nanocomposite Multilayer Film
,”
Vacuum
,
65
(
1
), pp.
51
58
.
34.
Wang
,
Y.
,
Li
,
R.
,
Zhao
,
X.
,
Xue
,
Y.
,
An
,
Y.
,
Zhou
,
H.
, and
Chen
,
J.
,
2023
, “
The Synergistic Action of Ag and MoS2 on Tribological Properties of Al2O3/Ag(MoS2) Composite Coatings
,”
Surf. Coat. Technol.
,
466
(
1
), p.
129633
.
35.
Lu
,
X.
,
Yan
,
M.
,
Yan
,
Z.
,
Chen
,
W.
,
Sui
,
X.
,
Hao
,
J.
, and
Liu
,
W.
,
2021
, “
Exploring the Atmospheric Tribological Properties of MoS2–(Cr, Nb, Ti, Al, V) Composite Coatings by High Throughput Preparation Method
,”
Tribol. Int.
,
156
(
1
), p.
106844
.
36.
Hu
,
Y.
,
Wang
,
J. J.
,
Li
,
W.
,
Tang
,
X.
,
Tan
,
T.
,
Li
,
Z.
,
Feng
,
H.
, and
Zhang
,
G.
,
2024
, “
The Effects of Ti Content on Tribological and Corrosion Performances of MoS2–Ti Composite Films
,”
Vacuum
,
221
(
1
), p.
112889
.
37.
Serpini
,
E.
,
Rota
,
A.
,
Ballestrazzi
,
A.
,
Marchetto
,
D.
,
Gualtieri
,
E.
, and
Valeri
,
S.
,
2017
, “
The Role of Humidity and Oxygen on MoS2 Thin Films Deposited by RF PVD Magnetron Sputtering
,”
Surf. Coat. Technol.
,
319
(
1
), pp.
345
352
.
38.
Khare
,
H. S.
, and
Burris
,
D. L.
,
2014
, “
Surface Andsubsurface Contributions of Oxidation and Moisture to Room Temperature Friction of Molybdenum Disulfide
,”
Tribol. Lett.
,
53
(
1
), pp.
329
336
.
39.
Zhou
,
H.
,
Zheng
,
J.
,
Wen
,
Q. P.
,
Wan
,
Z.-H.
, and
Sang
,
R.-P.
,
2011
, “
The Effect of Ti Content on the Structural and Mechanical Properties of MoS2–Ti Composite Coatings Deposited by Unbalanced Magnetron Sputtering System
,”
4th International Conference on Surface and Interface Science and Engineering (SISE)
,
Lanzhou, China
,
Sept. 12–18
.
40.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res. Technol.
,
7
(
6
), pp.
1564
1583
.
41.
Renevier
,
N. M.
,
Lobiondo
,
N.
,
Fox
,
V. C.
,
Teer
,
D. G.
, and
Hampshire
,
J.
,
2000
, “
Performance of MoS2metal Composite Coatings Used for Dry Machining and Other Industrial Applications
,”
Surf. Coat. Technol.
,
123
(
1
), pp.
84
91
.
42.
Chen
,
X.
,
Du
,
Y.
, and
Chung
,
Y.-W.
,
2019
, “
Commentary on Using H/E and H3/E2 as Proxies for Fracture Toughness of Hard Coatings
,”
Thin Solid Films
,
688
(
1
), p.
137265
.
43.
Beake
,
B. D.
,
2022
, “
The Influence of the H/E Ratio on Wear Resistance of Coating Systems—Insights From Small-Scale Testing
,”
Surf. Coat. Technol.
,
442
(
1
), p.
128272
.
44.
Qin
,
X. P.
,
Ke
,
P. L.
,
Wang
,
A. Y.
, and
Kim
,
K. H.
,
2013
, “
Microstructure, Mechanical and Tribological Behaviors of MoS2–Ti Composite Coatings Deposited by a Hybrid HIPIMS Method
,”
Surf. Coat. Technol.
,
228
(
1
), pp.
275
281
.
45.
Dean
,
J. A.
,
1978
,
Lange's Handbook of Chemistry
,
McGraw-Hill
,
New York
.
46.
Zeng
,
C.
,
Pu
,
J. B.
,
Wang
,
H. X.
,
Zheng
,
S.
,
Wang
,
L.
, and
Xue
,
Q.
,
2019
, “
Study on Atmospheric Tribology Performance of MoS2-W Films With Self-Adaption to Temperature
,”
Ceram. Int.
,
45
(
13
), pp.
15834
15842
.
47.
Pritchard
,
C.
, and
Midgley
,
J. W.
,
1969
, “
The Effect of Humidity on the Friction and Life of Unbonded Molybdenum Disulphide Films
,”
Wear
,
13
(
1
), pp.
39
50
.
48.
Li
,
H.
,
Li
,
X.
,
Zhang
,
G. A.
,
Wang
,
L.
, and
Wu
,
G.
,
2017
, “
Exploring the Tribophysics and Tribochemistry of MoS2 by Sliding MoS2/Ti Composite Coating Under Different Humidity
,”
Tribol. Lett.
,
65
(
2
), p.
38
.
49.
Sproles
,
E. S.
, and
Duquette
,
D. J.
,
1978
, “
The Mechanism of Material Removal in Fretting
,”
Wear
,
49
(
2
), pp.
339
352
.
50.
Wang
,
K.-X.
,
Wang
,
X.-Y.
,
Hong
,
C.-B.
,
Zhao
,
B.-Y.
,
Xie
,
W.-C.
, and
Tang
,
W.-Q.
,
1995
, “
Raman Studies on Nanocrystal TiO2 Gels
,”
Acta Phys. -Chim. Sin.
,
11
(
1
), pp.
5
8
.
51.
Wang
,
Y.
,
Du
,
X.
,
Wang
,
J.
,
Su
,
M.
,
Wan
,
X.
,
Meng
,
H.
,
Xie
,
W.
,
Xu
,
J.
, and
Liu
,
P.
,
2017
, “
Growth of Large-Scale, Large-Size, Few-Layered α-MoO3 on SiO2 and Its Photoresponse Mechanism
,”
ACS Appl. Mater. Interfaces
,
9
(
6
), pp.
5543
5549
.
You do not currently have access to this content.