Graphical Abstract Figure

BUE Formation at tools top view: S125F150L15 at 500× magnification

Graphical Abstract Figure

BUE Formation at tools top view: S125F150L15 at 500× magnification

Close modal

Abstract

The Inconel® 718 alloy presents superior mechanical properties, which is why it is considered a difficult-to-machine material. To improve the milling process performance, multilayer TiN/TiAlN-coated tools were deposited by Physical Vapor Deposition High Power Impulse Magnetron Sputtering. Moreover, a lacuna exists in the literature concerning the milling of Inconel® 718 and the selection of ideal machining parameters. Based on this, the surface roughness (Ra), the evolution of flank wear, wear mechanisms, and the tool lifespan were analyzed. The parameters varied in the process were cutting speed (Vc), feed per tooth (fz), and cutting length (Lcut). It was possible to verify the influence of the cutting length on the aspects evaluated and to observe that the cutting speed has a great impact, since the higher this parameter, the greater the roughness and wear obtained, and the shorter the tool life. The primary degradation mechanisms were as follows: abrasive, followed by material adhesion, with the onset of built-up edge development.

References

1.
Sebbe
,
N. P. V.
,
Fernandes
,
F.
,
Sousa
,
V. F. C.
, and
Silva
,
F. G. S.
,
2022
, “
Hybrid Manufacturing Processes Used in the Production of Complex Parts: A Comprehensive Review
,”
Metals
,
12
(
11
), p.
1874
.
2.
Arrazola
,
P. J.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I. S.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann.
,
62
(
2
), pp.
695
718
.
3.
Zhang
,
Y.
,
Robles-Linares
,
J. A.
,
Chen
,
L.
,
Liao
,
Z.
,
Shih
,
A. J.
, and
Wang
,
C.
,
2022
, “
Advances in Machining of Hard Tissues—From Material Removal Mechanisms to Tooling Solutions
,”
Int. J. Mach. Tools Manuf.
,
172
, p.
103838
.
4.
Jain
,
N. K.
, and
Jain
,
V. K.
,
2001
, “
Modeling of Material Removal in Mechanical Type Advanced Machining Processes: A State-of-Art Review
,”
Int. J. Mach. Tools Manuf.
,
41
(
11
), pp.
1573
1635
.
5.
Sousa
,
V. F. C.
, and
Silva
,
F. J. G.
,
2020
, “
Recent Advances on Coated Milling Tool Technology—A Comprehensive Review
,”
Coatings
,
10
(
3
), p.
235
.
6.
Sebbe
,
N. P. V.
,
Fernandes
,
F.
,
Silva
,
F. J. G.
,
Sousa
,
V. F. C.
,
Sales-Contini
,
R. C. M.
,
Campilho
,
R. D. S. G.
, and
Pedroso
,
A. F. V.
,
2024
, “
Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems
,”
FAIM 2023. Lecture Notes in Mechanical Engineering
,
F. J. G.
Silva
,
A. B.
Pereira
, and
R. D. S. G.
Campilho
, eds.,
Springer Nature Switzerland
,
Cham
, pp.
784
795
.
7.
Xiao
,
Y.
,
Jiang
,
Z.
,
Gu
,
Q.
,
Yan
,
W.
, and
Wang
,
R.
,
2021
, “
A Novel Approach to CNC Machining Center Processing Parameters Optimization Considering Energy-Saving and Low-Cost
,”
J. Manuf. Syst.
,
59
, pp.
535
548
.
8.
Viswanathan
,
G.
,
Praveen
,
R.
,
Prabhu
,
L.
, and
Prakash
,
S.
,
2021
, “
Evaluating the Machining Parameters for Milling P20
HH Mould Steel Using a Specific End Mill
,”
Mater. Today: Proc.
,
46
, pp.
8248
8253
.
9.
Kumaran
,
D.
,
Paramasivam
,
S. S. S. S.
, and
Natarajan
,
H.
,
2021
, “
Optimization of High Speed Machining Cutting Parameters for End Milling of AlSi7Cu4 Using Taguchi Based Technique of Order Preference Similarity to the Ideal Solution
,”
Mater. Today Proc.
,
47
, pp.
6799
6804
.
10.
Aramesh
,
M.
,
Montazeri
,
S.
, and
Veldhuis
,
S. C.
,
2018
, “
A Novel Treatment for Cutting Tools for Reducing the Chipping and Improving Tool Life During Machining of Inconel 718
,”
Wear
,
414–415
, pp.
79
88
.
11.
Gao
,
Y.
,
Zhang
,
D.
,
Cao
,
M.
,
Chen
,
R.
,
Feng
,
Z.
,
Poprawe
,
R.
,
Schleifenbaum
,
J. H.
, and
Ziegler
,
S.
,
2019
, “
Effect of δ Phase on High Temperature Mechanical Performances of Inconel 718 Fabricated With SLM Process
,”
Mater. Sci. Eng. A
,
767
, p.
138327
.
12.
Thakur
,
D. G.
,
Ramamoorthy
,
B.
, and
Vijayaraghavan
,
L.
,
2009
, “
Machinability Investigation of Inconel 718 in High-Speed Turning
,”
Int. J. Adv. Manuf. Technol.
,
45
(
5
), pp.
421
429
.
13.
Yin
,
Q.
,
Liu
,
Z.
, and
Wang
,
B.
,
2021
, “
Machinability Improvement of Inconel 718 Through Mechanochemical and Heat Transfer Effects of Coated Surface-Active Thermal Conductive Mediums
,”
J. Alloys Compd.
,
876
, p.
160186
.
14.
Sugahara
,
T.
,
Couto
,
A.
,
Barboza
,
M.
,
Piorino Neto
,
F.
,
Takahashi
,
R.
, and
Reis
,
D.
,
2022
, “
Creep and Mechanical Behavior Study of Inconel 718 Superalloy
,”
Mater. Res.
,
25
, pp.
1
9
.
15.
Buddaraju
,
K. M.
,
Ravi Kiran Sastry
,
G.
, and
Kosaraju
,
S.
,
2021
, “
A Review on Turning of Inconel Alloys
,”
Mater. Today: Proc.
,
44
, pp.
2645
2652
.
16.
Agmell
,
M.
,
Bushlya
,
V.
,
M'Saoubi
,
R.
,
Gutnichenko
,
O.
,
Zaporozhets
,
O.
,
Laakso
,
S. V. A.
, and
Ståhl
,
J.
,
2020
, “
Investigation of Mechanical and Thermal Loads in pcBN Tooling During Machining of Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
107
(
3
), pp.
1451
1462
.
17.
Dudzinski
,
D.
,
Devillez
,
A.
,
Moufki
,
A.
,
Larrouquère
,
D.
,
Zerrouki
,
V.
, and
Vigneau
,
J.
,
2004
, “
A Review of Developments Towards Dry and High-Speed Machining of Inconel 718 Alloy
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
439
456
.
18.
Jadam
,
T.
,
Datta
,
S.
, and
Masanta
,
M.
,
2021
, “
Influence of Cutting Tool Material on Machinability of Inconel 718 Superalloy
,”
Mach. Sci. Technol.
,
25
(
3
), pp.
349
397
.
19.
Maiyar
,
L. M.
,
Ramanujam
,
R.
,
Venkatesan
,
K.
, and
Jerald
,
J.
,
2013
, “
Optimization of Machining Parameters for End Milling of Inconel 718 Super Alloy Using Taguchi Based Grey Relational Analysis
,”
Procedia Eng.
,
64
, pp.
1276
1282
.
20.
Sharman
,
A.
,
Dewes
,
R. C.
, and
Aspinwall
,
D. K.
,
2001
, “
Tool Life When High Speed Ball Nose end Milling Inconel 718TM
,”
J. Mater. Process. Technol.
,
118
(
1
), pp.
29
35
.
21.
Li
,
W.
,
Guo
,
Y. B.
,
Barkey
,
M. E.
, and
Jordon
,
J. B.
,
2014
, “
Effect Tool Wear During End Milling on the Surface Integrity and Fatigue Life of Inconel 718
,”
Procedia CIRP
,
14
, pp.
546
551
.
22.
Feng
,
Y.
,
Pan
,
Z.
, and
Liang
,
S. Y.
,
2018
, “
Temperature Prediction in Inconel 718 Milling With Microstructure Evolution
,”
Int. J. Adv. Manuf. Technol.
,
95
(
9
), pp.
4607
4621
.
23.
Mahmood
,
J.
,
Mustafa
,
G.
, and
Ali
,
M.
,
2022
, “
Accurate Estimation of Tool Wear Levels During Milling, Drilling and Turning Operations by Designing Novel Hyperparameter Tuned Models Based on LightGBM and Stacking
,”
Measurement
,
190
, p.
110722
.
24.
Sahoo
,
P.
,
Patra
,
K.
, and
Pimenov
,
D. Y.
,
2022
, “
Enhancement of Micro Milling Performance by Abrasion-Resistant Coated Tools With Optimized Thin-Film Thickness: Analytical and Experimental Characterization
,”
Int. J. Adv. Manuf. Technol.
,
120
(
5
), pp.
2993
3015
.
25.
Wang
,
Z.
,
Zhang
,
B.
,
Gao
,
K.
, and
Liu
,
R.
,
2022
, “
Adjustable TiN Coatings Deposited With HiPIMS on Titanium Bipolar Plates for PEMFC
,”
Int. J. Hydrogen Energy
,
47
(
92
), pp.
39215
39224
.
26.
Azim
,
S.
,
Gangopadhyay
,
S.
,
Mahapatra
,
S. S.
, and
Mittal
,
R. K.
,
2022
, “
Performance Evaluation of CrAlN and TiAlN Coatings Deposited by HiPIMS in Micro Drilling of a Ni-Based Superalloy
,”
Surf. Coat. Technol.
,
449
, p.
128980
.
27.
Li
,
G.
,
Zhang
,
L.
,
Cai
,
F.
,
Yang
,
Y.
,
Wang
,
Q.
, and
Zhang
,
S.
,
2019
, “
Characterization and Corrosion Behaviors of TiN/TiAlN Multilayer Coatings by Ion Source Enhanced Hybrid Arc Ion Plating
,”
Surf. Coat. Technol.
,
366
, pp.
355
365
.
28.
Wang
,
J.
,
Yazdi
,
M. A. P.
,
Lomello
,
F.
,
Billard
,
A.
,
Kovács
,
A.
,
Schuster
,
F.
,
Guet
,
C.
,
White
,
T. J.
,
Sanchette
,
F.
, and
Dong
,
Z.
,
2017
, “
Influence of Microstructures on Mechanical Properties and Tribology Behaviors of TiN/TiXAl1−XN Multilayer Coatings
,”
Surf. Coat. Technol.
,
320
, pp.
441
446
.
29.
Sousa
,
V. F. C.
,
Da Silva
,
F. J. G.
,
Pinto
,
G. F.
,
Baptista
,
A.
, and
Alexandre
,
R.
,
2021
, “
Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review
,”
Metals
,
11
(
2
), p.
260
.
30.
Liu
,
W.
,
Chu
,
Q.
,
Zeng
,
J.
,
He
,
R.
,
Wu
,
H.
,
Wu
,
Z.
, and
Wu
,
S.
,
2017
, “
PVD-CrAlN and TiAlN Coated Si3N4 Ceramic Cutting Inserts-2. High Speed Face Milling Performance and Wear Mechanism Study
,”
Ceram Int.
,
43
(
12
), pp.
9488
9492
.
31.
Ni
,
C.
,
Zhu
,
L.
, and
Yang
,
Z.
,
2019
, “
Comparative Investigation of Tool Wear Mechanism and Corresponding Machined Surface Characterization in Feed-Direction Ultrasonic Vibration Assisted Milling of Ti–6Al–4V From Dynamic View
,”
Wear
,
436–437
, p.
203006
.
32.
Kursuncu
,
B.
,
Caliskan
,
H.
,
Guven
,
S. Y.
, and
Panjan
,
P.
,
2017
, “
Wear Behavior of Multilayer Nanocomposite TiAlSiN/TiSiN/TiAlN Coated Carbide Cutting Tool During Face Milling of Inconel 718 Superalloy
,”
J. Nano Res.
,
47
, pp.
11
16
.
33.
Martinho
,
R. P.
,
Silva
,
F. J. G.
, and
Baptista
,
A. P. M.
, “
Wear Behaviour of Uncoated and Diamond Coated Si3N4 Tools Under Severe Turning Conditions
,”
Wear
,
263
(
7
), pp.
1417
1422
.
34.
Chang
,
Y. Y.
, and
Lai
,
H. M.
,
2014
, “
Wear Behavior and Cutting Performance of CrAlSiN and TiAlSiN Hard Coatings on Cemented Carbide Cutting Tools for Ti Alloys
,”
Surf. Coat. Technol.
,
259
, pp.
152
158
.
35.
Sousa
,
V. F. C.
,
Fernandes
,
F.
,
Silva
,
F. J. G.
,
Costa
,
R. D. F. S.
,
Sebbe
,
N.
, and
Sales-Contini
,
R. C. M.
,
2023
, “
Wear Behavior Phenomena of TiN/TiAlN HiPIMS PVD-Coated Tools on Milling Inconel 718
,”
Metals
,
13
(
4
), p. 684.
36.
Zuo
,
J.
,
Lin
,
Y.
,
Zheng
,
J.
,
Zhong
,
P.
, and
He
,
M.
,
2019
, “
An Investigation of Thermal-Mechanical Interaction Effect on PVD Coated Tool Wear for Milling Be/Cu Alloy
,”
Vacuum
,
167
, pp.
271
279
.
37.
Dadgari
,
A.
,
Huo
,
D.
, and
Swailes
,
D.
,
2018
, “
Investigation on Tool Wear and Tool Life Prediction in Micro-Milling of Ti-6Al-4V
,”
Nanotechnol. Precis. Eng.
,
1
(
4
), pp.
218
225
.
38.
Aurich
,
J. C.
,
Kieren-Ehses
,
S.
,
Mayer
,
T.
,
Bohley
,
M.
, and
Kirsch
,
B.
,
2022
, “
An Investigation of the Influence of the Coating on the Tool Lifetime and Surface Quality for Ultra-Small Micro End Mills With Different Diameters
,”
CIRP J. Manuf. Sci. Technol.
,
37
, pp.
92
102
.
39.
Zhang
,
L.
,
Zhong
,
Z.
,
Qiu
,
L.
,
Shi
,
H.
,
Layyous
,
A.
, and
Liu
,
S.
,
2019
, “
Coated Cemented Carbide Tool Life Extension Accompanied by Comb Cracks: The Milling Case of 316L Stainless Steel
,”
Wear
,
418–419
, pp.
133
139
.
40.
Oganyan
,
M.
,
Vereschaka
,
A.
,
Volosova
,
M.
, and
Gurin
,
V.
,
2021
, “
Influence of the Application of Wear-Resistant Coatings on Force Parameters of the Cutting Process and the Tool Life During end Milling of Titanium Alloys
,”
Mater. Today: Proc.
,
38
, pp.
1428
1432
.
41.
1996
, “
ISO 4288:1996—Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture
,” International Organization for Standardization, Geneva, Switzerland.
42.
1986
, “
ISO 8688-2:1986—Tool Life Testing in Milling—Part 2: End Milling
,” International Organization for Standardization, Geneva, Switzerland.
43.
Liang
,
X.
, and
Liu
,
Z.
,
2018
, “
Tool Wear Behaviors and Corresponding Machined Surface Topography During High-Speed Machining of Ti-6Al-4V With Fine Grain Tools
,”
Tribol. Int.
,
121
, pp.
321
332
.
44.
Airao
,
J.
,
Chaudhary
,
B.
,
Bajpai
,
V.
, and
Khanna
,
N.
,
2018
, “
An Experimental Study of Surface Roughness Variation in End Milling of Super Duplex 2507 Stainless Steel
,”
Mater. Today: Proc.
,
5
(
2
), pp.
3682
3689
, Part 1.
45.
Čep
,
R.
,
Janásek
,
A.
,
Petrů
,
J.
,
Sadilek
,
M.
,
Mohyla
,
P.
,
Valíček
,
J.
,
Harničárová
,
M.
, and
Czán
,
A.
,
2014
, “
Surface Roughness After Machining and Influence of Feed Rate on Process
,”
Key Eng. Mater.
,
581
, pp.
341
347
.
46.
Marakini
,
V.
,
Pai
,
S. P.
,
Bhat
,
U. K.
,
Thakur
,
D. S.
, and
Achar
,
B. P.
,
2022
, “
High-Speed Face Milling of AZ91 Mg Alloy: Surface Integrity Investigations
,”
Int. J. Lightweight Mater. Manuf.
,
5
(
4
), pp.
528
542
.
47.
Buj-Corral
,
I.
,
Vivancos-Calvet
,
J.
, and
Domínguez-Fernández
,
A.
,
2012
, “
Surface Topography in Ball-End Milling Processes as a Function of Feed Per Tooth and Radial Depth of Cut
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
151
159
.
48.
Ramesh
,
L.
Karunamoorthy
,
L.
, and
Palanikumar
,
K.
,
2008
, “
Surface Roughness Analysis in Machining of Titanium Alloy
,”
Mater. Manuf. Processes
,
23
(
2
), pp.
174
181
.
49.
Natasha
,
A. R.
,
Ghani
,
J. A.
,
Che Haron
,
C. H
, and
Syarif
,
J.
,
2018
, “
The Influence of Machining Condition and Cutting Tool Wear on Surface Roughness of AISI 4340 Steel
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
290
(
1
), p.
12017
.
50.
Zimmermann
,
R.
,
Welling
,
D.
,
Venek
,
T.
,
Ganser
,
P.
, and
Bergs
,
T.
,
2021
, “
Tool Wear Progression of SiAlON Ceramic End Mills in Five-Axis High-Feed Rough Machining of an Inconel 718 BLISK
,”
Procedia CIRP
,
101
, pp.
13
16
.
51.
Tillmann
,
W.
,
Grisales
,
D.
,
Stangier
,
D.
,
Thomann
,
C.
,
Debus
,
J.
,
Nienhaus
,
A.
, and
Apel
,
D.
,
2021
, “
Residual Stresses and Tribomechanical Behaviour of TiAlN and TiAlCN Monolayer and Multilayer Coatings by DCMS and HiPIMS
,”
Surf. Coat. Technol.
,
406
, p.
126664
.
52.
Breidenstein
,
B.
, and
Denkena
,
B.
,
2013
, “
Significance of Residual Stress in PVD-Coated Carbide Cutting Tools
,”
CIRP Ann.
,
62
(
1
), pp.
67
70
.
53.
Breidenstein
,
B.
,
2014
, “Surface Integrity,”
CIRP Encyclopedia of Production Engineering
,
L.
Luc
, and
G.
Reinhart
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
1188
1199
..
54.
Dhananchezian
,
M.
, and
Rajkumar
,
K.
,
2020
, “
Comparative Study of Cutting Insert Wear and Roughness Parameter (Ra) While Turning Nimonic 90 and Hastelloy C-276 by Coated Carbide Inserts
,”
Mater. Today: Proc.
,
22
, pp.
1409
1416
.
55.
Rahman
,
M. A.
,
Bhuiyan
,
M. S.
,
Sharma
,
S.
,
Kamal
,
M. S.
,
Imtiaz
,
M. M. M.
,
Alfaify
,
A.
,
Nguyen
,
T.-T.
, et al
,
2021
, “
Influence of Feed Rate Response (FRR) on Chip Formation in Micro and Macro Machining of Al Alloy
,”
Metals
,
11
(
1
), p.
159
.
56.
Korkut
,
I.
, and
Donertas
,
M. A.
,
2007
, “
The Influence of Feed Rate and Cutting Speed on the Cutting Forces, Surface Roughness and Tool–Chip Contact Length During Face Milling
,”
Mater. Des.
,
28
(
1
), pp.
308
312
.
57.
Zhou
,
J.
,
Bushlya
,
V.
,
Avdovic
,
P.
, and
Ståhl
,
J. E.
,
2012
, “
Study of Surface Quality in High Speed Turning of Inconel 718 With Uncoated and Coated CBN Tools
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1
), pp.
141
151
.
58.
Silva
,
F. J. G.
,
Sousa
,
V. F. C.
,
Pinto
,
A. G.
,
Ferreira
,
L. P.
, and
Pereira
,
T.
,
2022
, “
Build-Up an Economical Tool for Machining Operations Cost Estimation
,”
Metals
,
12
(
7
), p.
1205
.
59.
Dolinšek
,
S.
,
Šuštaršič
,
B.
, and
Kopač
,
J.
,
2001
, “
Wear Mechanisms of Cutting Tools in High-Speed Cutting Processes
,”
Wear
,
250
(
1
), pp.
349
356
.
60.
De Bartolomeis
,
A.
,
Newman
,
S. T.
,
Jawahir
,
I. S.
,
Biermann
,
D.
, and
Shokrani
,
A.
,
2021
, “
Future Research Directions in the Machining of Inconel 718
,”
J. Mater. Process. Technol.
,
297
, p.
117260
.
61.
Narutaki
,
N.
,
Yamane
,
Y.
,
Hayashi
,
K.
,
Kitagawa
,
T.
, and
Uehara
,
K.
,
1993
, “
High-Speed Machining of Inconel 718 with Ceramic Tools
,”
CIRP Ann.
,
42
(
1
), pp.
103
106
.
62.
Sousa
,
V. F. C.
,
Silva
,
F. J. G.
,
Alexandre
,
R.
,
Fecheira
,
J. S.
, and
Silva
,
F. P. N.
,
2021
, “
Study of the Wear Behaviour of TiAlSiN and TiAlN PVD Coated Tools on Milling Operations of Pre-Hardened Tool Steel
,”
Wear
,
476
, p.
203695
.
63.
Kamdani
,
K.
,
Hasan
,
S.
, and
Lajis
,
M. A.
,
2014
, “
The Effects of TiAlN and TiN Coating During End Milling of INCONEL 718
,”
Appl. Mech. Mater.
,
564
, pp.
566
571
.
64.
Motorcu
,
A. R.
,
Kuş
,
A.
,
Arslan
,
R.
,
Tekin
,
Y.
, and
Ezentas
,
R.
,
2013
, “
Evaluation of Tool Life—Tool Wear in Milling of Inconel 718 Superalloy and the Investigation of Effects of Cutting Parameters on Surface Roughness With Taguchi Method
,”
Teh. Vjesn.-Tech. Gaz.
,
20
, pp.
765
774
.
65.
Bouzid
,
L.
,
Berkani
,
S.
,
Yallese
,
M. A.
,
Girardin
,
F.
, and
Mabrouki
,
T.
,
2018
, “
Estimation and Optimization of Flank Wear and Tool Lifespan in Finish Turning of AISI 304 Stainless Steel Using Desirability Function Approach
,”
Int. J. Ind. Eng. Comput.
,
9
, pp.
349
368
.
You do not currently have access to this content.