Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Ultra-high molecular weight polyethylene (UHMWPE) is often limited by poor tribological properties in artificial joints, leading to high wear-rates compared to metals and ceramics. This study explores the use of wollastonite, a natural mineral, as a filler to enhance the tribological performance of UHMWPE composites. X-ray diffraction (XRD) analysis revealed that wollastonite content and particle size inversely affected the crystallinity of the composite due to heterogeneous nucleation and stress concentration. The incorporation of wollastonite significantly improved the tribological performance, with wear-rate reductions of 71%, 69.81%, and 50.73% under dry friction, normal saline (NS) lubricant, and new-born calf serum (NBCS) lubricant conditions, respectively. The wear mechanisms in the composite were predominantly slight fatigue and abrasive wear, contrasting with the extrusion deformation and severe fatigue wear observed in neat UHMWPE. Additionally, simulated body fluid (SBF) immersion tests demonstrated the composite's ability to form a surface apatite-like deposition. These findings suggest that wollastonite reinforcement effectively enhances both mechanical and tribological properties of UHMWPE.

References

1.
Liu
,
F.
,
He
,
Y.
,
Gao
,
Z.
, and
Jiao
,
D.
,
2021
, “
Enhanced Computational Modelling of UHMWPE Wear in Total Hip Joint Replacements: The Role of Frictional Work and Contact Pressure
,”
Wear
,
482–483
, p.
203985
.
2.
Wahed
,
S.
,
Dunstan
,
C.
,
Boughton
,
P.
,
Ruys
,
A.
,
Faisal
,
S.
,
Wahed
,
T.
,
Salahuddin
,
B.
, et al
,
2022
, “
Functional Ultra-High Molecular Weight Polyethylene Composites for Ligament Reconstructions and Their Targeted Applications in the Restoration of the Anterior Cruciate Ligament
,”
Polymers
,
14
(
11
), p.
2189
.
3.
Matsumae
,
G.
,
Kida
,
H.
,
Takahashi
,
D.
,
Shimizu
,
T.
,
Ebata
,
T.
,
Yokota
,
S.
,
Alhasan
,
H.
, et al
,
2022
, “
Determination of Optimal Concentration of Vitamin E in Polyethylene Liners for Producing Minimal Biological Response to Prosthetic Wear Debris
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
110
(
7
), pp.
1587
1593
.
4.
Li
,
X.
,
Lu
,
Y.
,
Li
,
J.
,
Zhou
,
S.
,
Wang
,
Y.
,
Li
,
L.
, and
Zhao
,
F.
,
2022
, “
Photoluminescent Carbon Dots (PCDs) From Sour Apple: A Biocompatible Nanomaterial for Preventing UHMWPE Wear-Particle Induced Osteolysis via Modulating Chemerin/ChemR23 and SIRT1 Signaling Pathway and Its Bioimaging Application
,”
J. Nanobiotechnol.
,
20
(
1
), p.
301
.
5.
Sethi
,
R. K.
,
Neavyn
,
M. J.
,
Rubash
,
H. E.
, and
Shanbhag
,
A. S.
,
2003
, “
Macrophage Response to Cross-Linked and Conventional UHMWPE
,”
Biomaterials
,
24
(
15
), pp.
2561
2573
.
6.
Yamamoto
,
G.
,
Shirasu
,
K.
,
Hashida
,
T.
,
Takagi
,
T.
,
Suk
,
J. W.
,
An
,
J.
,
Piner
,
R. D.
, and
Ruoff
,
R. S.
,
2011
, “
Nanotube Fracture During the Failure of Carbon Nanotube/Alumina Composites
,”
Carbon
,
49
(
12
), pp.
3709
3716
.
7.
Wang
,
A.
,
Yau
,
S.-S.
,
Essner
,
A.
,
Herrera
,
L.
,
Manley
,
M.
, and
Dumbleton
,
J.
,
2008
, “
A Highly Crosslinked UHMWPE for CR and PS Total Knee Arthroplasties
,”
J. Arthroplasty
,
23
(
4
), pp.
559
566
.
8.
Takahashi
,
Y.
,
Yamamoto
,
K.
, and
Pezzotti
,
G.
,
2015
, “
Effects of Vitamin E Blending on Plastic Deformation Mechanisms of Highly Crosslinked Ultrahigh Molecular Weight Polyethylene (HXL-UHMWPE) in Total hip Arthroplasty
,”
Acta Biomater.
,
15
, pp.
227
236
.
9.
Wannomae
,
K. K.
,
Bhattacharyya
,
S.
,
Freiberg
,
B. A.
,
Estok
,
D.
,
Harris
,
W. H.
, and
Muratoglu
,
O.
,
2006
, “
Vivo Oxidation of Retrieved Cross-Linked Ultra-High-Molecular-Weight Polyethylene Acetabular Components With Residual Free Radicals
,”
J. Arthroplasty
,
21
(
7
), pp.
1005
1011
.
10.
Oral
,
E.
,
Malhi
,
A. S.
, and
Muratoglu
,
O. K.
,
2006
, “
Mechanisms of Decrease in Fatigue Crack Propagation Resistance in Irradiated and Melted UHMWPE
,”
Biomaterials
,
27
(
6
), pp.
917
925
.
11.
Melk
,
L.
, and
Emami
,
N.
,
2018
, “
Mechanical and Thermal Performances of UHMWPE Blended Vitamin E Reinforced Carbon Nanoparticle Composites
,”
Compos. Part B: Eng.
,
146
, pp.
20
27
.
12.
Shahemi
,
N. H.
,
Liza
,
S.
,
Sawae
,
Y.
,
Morita
,
T.
,
Fukuda
,
K.
, and
Yaakob
,
Y.
,
2021
, “
The Relations Between Wear Behavior and Basic Material Properties of Graphene-Based Materials Reinforced Ultrahigh Molecular Weight Polyethylene
,”
Polym. Adv. Technol.
,
32
(
11
), pp.
4263
4281
.
13.
Hussain
,
M.
,
Naqvi
,
R. A.
,
Abbas
,
N.
,
Khan
,
S. M.
,
Nawaz
,
S.
,
Hussain
,
A.
,
Zahra
,
N.
, and
Khalid
,
M. W.
,
2020
, “
Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review
,”
Polymers
,
12
(
2
), p.
323
.
14.
Golchin
,
A.
,
Villain
,
A.
, and
Emami
,
N.
,
2017
, “
Tribological Behaviour of Nanodiamond Reinforced UHMWPE in Water-Lubricated Contacts
,”
Tribol. Int.
,
110
, pp.
195
200
.
15.
Lee
,
J.-Y.
,
Lim
,
D.-P.
, and
Lim
,
D.-S.
,
2007
, “
Tribological Behavior of PTFE Nanocomposite Films Reinforced With Carbon Nanoparticles
,”
Compos. Part B: Eng.
,
38
(
7–8
), pp.
810
816
.
16.
Joshi
,
H.
, and
Purnima
,
J.
,
2010
, “
Development of Glass Fiber, Wollastonite Reinforced Polypropylene Hybrid Composite: Mechanical Properties and Morphology
,”
Mater. Sci. Eng. A
,
527
(
7–8
), pp.
1946
1951
.
17.
Danilova
,
S. N.
,
Yarusova
,
S. B.
,
Kulchin
,
Y. N.
,
Zhevtun
,
I. G.
,
Buravlev
,
I. Y.
,
Okhlopkova
,
A. A.
,
Gordienko
,
P. S.
, and
Subbotin
,
E. P.
,
2021
, “
UHMWPE/CaSiO3 Nanocomposite: Mechanical and Tribological Properties
,”
Polymers
,
13
(
4
), p.
570
.
18.
Long
,
L. H.
,
Chen
,
L. D.
, and
Chang
,
J.
,
2006
, “
Low Temperature Fabrication and Characterizations of P-CaSiO3 Ceramics
,”
Ceram. Int.
,
32
(
4
), pp.
457
460
.
19.
Ge
,
R.
,
Xun
,
C.
,
Yang
,
J.
,
Jia
,
W.
, and
Li
,
Y.
,
2019
, “
In Vivo Therapeutic Effect of Wollastonite and Hydroxyapatite on Bone Defect
,”
Biomed. Mater.
,
14
(
6
), p.
065013
.
20.
Barbosa
,
W. T.
,
de Almeida
,
K. V.
,
de Lima
,
G. G.
,
Rodriguez
,
M. A.
,
Lia Fook
,
M. V.
,
Garcia-Carrodeguas
,
R.
,
da Silva Junior
,
V. A.
,
de Sousa Segundo
,
F. A.
, and
de Sá
,
M. J. C.
,
2020
, “
Synthesis and in Vivo Evaluation of a Scaffold Containing Wollastonite/β-TCP for Bone Repair in a Rabbit Tibial Defect Model
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
108
(
3
), pp.
1107
1116
.
21.
Li
,
H. Y.
, and
Chang
,
J.
,
2004
, “
Fabrication and Characterization of Bioactive Wollastonite/PHBV Composite Scaffolds
,”
Biomaterials
,
25
(
24
), pp.
5473
5480
.
22.
Abdul-Kader
,
A. M.
, and
El-Gendy
,
Y. A.
,
2018
, “
Surface Characteristics Changes in Polymeric Material by Swift Ion Beam
,”
Nucl. Instrum. Methods Phys. Res. Sect., B
,
418
, pp.
41
45
.
23.
Zdero
,
R.
,
Bagheri
,
Z. S.
,
Rezaey
,
M.
,
Schemitsch
,
E. H.
, and
Bougherara
,
H.
,
2014
, “
The Biomechanical Effect of Loading Speed on Metal-on-UHMWPE Contact Mechanics
,”
Open Biomed. Eng. J.
,
8
(
1
), pp.
28
34
.
24.
Rothammer
,
B.
,
Marian
,
M.
,
Neusser
,
K.
,
Bartz
,
M.
,
Boehm
,
T.
,
Krauss
,
S.
,
Schroeder
,
S.
, et al
,
2021
, “
Amorphous Carbon Coatings for Total Knee Replacements-Part II: Tribological Behavior
,”
Polymers
,
13
(
11
), p.
1880
.
25.
Pier Macuvele
,
D. L.
,
Colla
,
G.
,
Cesca
,
K.
,
Ribeiro
,
L. F. B.
,
da Costa
,
C. E.
,
Nones
,
J.
,
Breitenbach
,
E. R.
, et al
,
2019
, “
UHMWPE/HA Biocomposite Compatibilized by Organophilic Montmorillonite: An Evaluation of the Mechanical-Tribological Properties and its Hemocompatibility and Performance in Simulated Blood Fluid
,”
Mater. Sci. Eng.: C
,
100
, pp.
411
423
.
26.
Wu
,
J.
,
Dong
,
P.
,
Wang
,
Z.
,
Wang
,
K.
,
Zhang
,
Q.
, and
Fu
,
Q.
,
2023
, “
Improving Wear Resistance of Ultrahigh Molecular Weight Polyethylene: Cross-Linking Versus Crystallinity
,”
Acta Polym. Sin.
,
54
(
5
), pp.
622
630
.
27.
Zexiong
,
W.
,
Anqi
,
L.
,
Zishou
,
Z.
, and
Kancheng
,
M.
,
2021
, “
Crystallization of UHMWPE Nanocomposites Filled by Multi-Wall Carbon Nanotubes
,”
J. Therm. Anal. Calorim.
,
146
(
5
), pp.
2223
2232
.
28.
Panin
,
S. V.
,
Huang
,
Q.
,
Alexenko
,
V. O.
,
Buslovich
,
D. G.
,
Kornienko
,
L. A.
,
Berto
,
F.
,
Bochkareva
,
S. A.
,
Panov
,
I. L.
, and
Ryabova
,
N. V.
,
2020
, “
Design of Wear-Resistant UHMWPE-Based Composites Loaded with Wollastonite Microfibers Treated With Various Silane Coupling Agents
,”
Appl. Sci.
,
10
(
13
), p.
4511
.
29.
Peng
,
Q.-Y.
,
Cong
,
P.-H.
,
Liu
,
X.-J.
,
Liu
,
T.-X.
,
Huang
,
S.
, and
Li
,
T.-S.
,
2009
, “
The Preparation of PVDF/Clay Nanocomposites and the Investigation of Their Tribological Properties
,”
Wear
,
266
(
7–8
), pp.
713
720
.
30.
Xiong
,
L.
,
Xiong
,
D.
,
Yang
,
Y.
, and
Jin
,
J.
,
2011
, “
Friction, Wear, and Tensile Properties of Vacuum Hot Pressing Crosslinked UHMWPE/Nano-HAP Composites
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
98B
(
1
), pp.
127
138
.
31.
Schwartz
,
C. J.
,
Bahadur
,
S.
, and
Mallapragada
,
S. K.
,
2007
, “
Effect of Crosslinking and Pt-Zr Quasicrystal Fillers on the Mechanical Properties and Wear Resistance of UHMWPE for Use in Artificial Joints
,”
Wear
,
263
(
7–12
), pp.
1072
1080
.
32.
Yang
,
D.
,
Qu
,
S.
,
Huang
,
J.
,
Cai
,
Z.
, and
Zhou
,
Z.
,
2012
, “
Characterization of Alendronate Sodium-Loaded UHMWPE for Anti-Osteolysis in Orthopedic Applications
,”
Mater. Sci. Eng.: C
,
32
(
2
), pp.
83
91
.
33.
Xiong
,
D.
, and
Ge
,
S.
,
2001
, “
Friction and Wear Properties of UHMWPE/Al2O3 Ceramic Under Different Lubricating Conditions
,”
Wear
,
250
(
1–12
), pp.
242
245
.
34.
Cai
,
T.
,
Zhan
,
S.
,
Yang
,
T.
,
Jia
,
D.
,
Cheng
,
B.
,
Tu
,
J.
,
Li
,
J.
, and
Duan
,
H.
,
2023
, “
Molecular Dynamics Simulation of α-ZrP/UHMWPE Blend Composites Containing Compatibilizer and Its Tribological Behavior Under Seawater Lubrication
,”
J. Appl. Polym. Sci.
,
140
(
3
), p.
e53321
.
35.
Ma
,
N.
,
Lin
,
G. M.
,
Xie
,
G. Y.
,
Sui
,
G. X.
, and
Yang
,
R.
,
2012
, “
Tribological Behavior of Polyetheretherketone Composites Containing Short Carbon Fibers and Potassium Titanate Whiskers in Dry Sliding Against Steel
,”
J. Appl. Polym. Sci.
,
123
(
2
), pp.
740
748
.
36.
Regis
,
M.
,
Lanzutti
,
A.
,
Bracco
,
P.
, and
Fedrizzi
,
L.
,
2018
, ”
Wear Behavior of Medical Grade PEEK and CFR PEEK Under Dry and Bovine Serum Conditions
,”
Wear
,
408
, pp.
86
95
.
37.
Belotti
,
L. P.
,
Vadivel
,
H. S.
, and
Emami
,
N.
,
2012
, “
Tribological Performance of Hygrothermally Aged UHMWPE Hybrid Composites
,”
Tribol. Int.
,
138
, pp.
150
156
.
38.
Li
,
X. B.
,
Yue
,
F. L.
,
Pang
,
W. C.
,
Wu
,
J. L.
, and
Kong
,
B. B.
,
2019
, “
Mechanical and Wear Properties of GO-Enhanced Irradiated UHMWPE With Good Oxidation Resistance
,”
Fullerenes, Nanotubes Carbon Nanostruct.
,
27
(
5
), pp.
459
467
.
39.
Nayak
,
C.
,
Singh
,
P.
, and
Balani
,
K.
,
2022
, “
Contact Stress and Sliding Wear Damage Tolerance of Hydroxyapatite and Carbon Nanotube Reinforced Polyethylene cup Liner Against Zirconia Femoral Head
,”
J. Mech. Behav. Biomed. Mater.
,
136
, p.
105435
.
40.
Shi
,
G.
,
Cao
,
Z.
,
Yan
,
X.
, and
Wang
,
Q.
,
2019
, “
In-Situ Fabrication of a UHMWPE Nanocomposite Reinforced by SiO2 Nanospheres and its Tribological Performance
,”
Mater. Chem. Phys.
,
236
, p.
121778
.
41.
Meng
,
Z.
,
Wang
,
Y.
,
Liu
,
H.
, and
Yan
,
F.
,
2022
, “
Carbon Fiber Modified by Attapulgite for Preparing Ultra-High Molecular Weight Polyethylene Composite With Enhanced Thermal, Mechanical, and Tribological Properties
,”
Polym. Adv. Technol.
,
33
(
12
), pp.
4142
4151
.
42.
Huang
,
J.
,
Qu
,
S.
,
Wang
,
J.
,
Yang
,
D.
,
Duan
,
K.
, and
Weng
,
J.
,
2013
, “
Reciprocating Sliding Wear Behavior of Alendronate Sodium-Loaded UHMWPE Under Different Tribological Conditions
,”
Mater. Sci. Eng.: C
,
33
(
5
), pp.
3001
3009
.
43.
Liu
,
X.
,
Ding
,
C.
, and
Chu
,
P.
,
2004
, “
Mechanism of Apatite Formation on Wollastonite Coatings in Simulated Body Fluids
,”
Biomaterials
,
25
(
10
), pp.
1755
1761
.
44.
Kobayashi
,
T.
,
Ono
,
S.
,
Hirakura
,
S.
,
Oaki
,
Y.
, and
Imai
,
H.
,
2012
, “
Morphological Variation of Hydroxyapatite Grown in Aqueous Solution Based on Simulated Body Fluid
,”
CrystEngComm
,
14
(
3
), pp.
1143
1149
.
You do not currently have access to this content.