Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this article, magnesium silicate hydroxide-graphite (MSH-C) and magnesium silicate hydroxide-graphene oxide (MSH-GO) composites were prepared by doping magnesium silicate hydroxide (MSH) with micron-sized few-layer graphene oxide (∼10 µm) and nanoscale graphite (∼300 nm), respectively, during the hydrothermal synthesis process. Octadecyltrimethoxysilane (ODTMS) was used as a surfactant to disperse these two types of additives into the fully formulated oil. Tribological tests demonstrated that MSH-C exhibited superior tribological properties compared to MSH-GO. The findings reveal that the oil sample containing 0.5 wt% MSH-C can effectively reduce wear volume by approximately 26.4% compared to fully formulated oil, with the friction coefficient decreased to ∼0.02. scanning electron microscopy (SEM), Raman, focused ion beam-transmission eletron microscope (FIB-TEM), and time of flight secondary ion mass spectrometry (TOF-SIMS) characterizations, along with molecular dynamics simulation, were used to investigate the tribological mechanism. A tribofilm composed of two layers of different compositions was formed on the worn surface of MSH-C, indicating the synergistic effect of MSH and graphite.

References

1.
Kumar
,
H.
, and
Harsha
,
A. P.
,
2021
, “
Augmentation in Tribological Performance of Polyalphaolefins by COOH-Functionalized Multiwalled Carbon Nanotubes as an Additive in Boundary Lubrication Conditions
,”
ASME J. Tribol.
,
143
(
10
), p.
102202
.
2.
Peña-Parás
,
L.
,
Taha-Tijerina
,
J.
,
Garza
,
L.
,
Maldonado-Cortés
,
D.
,
Michalczewski
,
R.
, and
Lapray
,
C.
,
2015
, “
Effect of CuO and Al2O3 Nanoparticle Additives on the Tribological Behavior of Fully Formulated Oils
,”
Wear
,
332
, pp.
1256
1261
.
3.
Wang
,
L.
,
Gong
,
P. W.
,
Li
,
W.
,
Luo
,
T.
, and
Cao
,
B. Q.
,
2020
, “
Mono-Dispersed Ag/Graphene Nanocomposite as Lubricant Additive to Reduce Friction and Wear
,”
Tribol. Int.
,
146
, p.
106228
.
4.
Guo
,
Y. B.
,
Yang
,
L.
,
Wang
,
D. G.
,
Liu
,
S. H.
, and
Zhang
,
S. W.
,
2015
, “
Preparation and Nanotribological Properties of Polyelectrolyte Multilayers With In Situ Au Nanoparticles
,”
Prog. Org. Coat.
,
88
, pp.
164
171
.
5.
Asadauskas
,
S. J.
,
Kreivaitis
,
R.
,
Bikulcius
,
G.
,
Griguceviciene
,
A.
, and
Padgurskas
,
J.
,
2016
, “
Tribological Effects of Cu, Fe and Zn Nano-Particles, Suspended in Mineral and Bio-Based Oils
,”
Lubr. Sci.
,
28
(
3
), pp.
157
176
.
6.
Yu
,
B.
,
Wang
,
K.
,
Pang
,
X. J.
,
Wu
,
G. S.
,
Pu
,
J. B.
, and
Zhao
,
H. C.
,
2022
, “
Tribological Properties of Alkylated Reduced Graphene Oxide as Lubricant Additive
,”
Tribol. Int.
,
165
, p.
107273
.
7.
Jeng
,
Y. R.
,
Huang
,
Y. H.
,
Tsai
,
P. C.
, and
Hwang
,
G. L.
,
2014
, “
Tribological Properties of Carbon Nanocapsule Particles as Lubricant Additive
,”
ASME J. Tribol.
,
136
(
4
), p.
041801
.
8.
Gao
,
R. Q.
,
Liu
,
W. B.
,
Chang
,
Q. Y.
,
Zhang
,
H.
, and
Liu
,
Y.
,
2021
, “
Tribological Property of Biocarbon-Based Magnesium Silicate Hydroxide Nanocomposite as Lubricant Additive at Different Concentrations of Additive and Dispersant
,”
ASME J. Tribol.
,
143
(
7
), p.
071901
.
9.
Chang
,
Q. Y.
,
Rudenko
,
P.
,
Miller
,
D. J.
,
Wen
,
J. G.
,
Berman
,
D.
,
Zhang
,
Y. P.
,
Arey
,
B.
,
Zhu
,
Z. H.
, and
Erdemir
,
A.
,
2017
, “
Operando Formation of an Ultra-Low Friction Boundary Film From Synthetic Magnesium Silicon Hydroxide Additive
,”
Tribol. Int.
,
110
, pp.
35
40
.
10.
Wang
,
B.
,
Chang
,
Q. Y.
,
Gao
,
K.
,
Fang
,
H. R.
,
Qing
,
T.
, and
Zhou
,
N. N.
,
2018
, “
The Synthesis of Magnesium Silicate Hydroxide With Different Morphologies and the Comparison of Their Tribological Properties
,”
Tribol. Int.
,
119
, pp.
672
679
.
11.
Wang
,
B.
,
Chang
,
Q.
,
Gao
,
K.
, and
Wang
,
K.
,
2020
, “
Hydrothermal Synthesized Magnesium Silicate Hydroxide/Graphene Nanocomposites in a MgO-Si2O-Graphite-H2O Alkaline System and its Application in Anti-Wear Additive Toward Infinitesimal Wear
,”
Tribol. Int.
,
148
, p.
106313
.
12.
Wang
,
K.
,
Chang
,
Q. Y.
,
Gao
,
K.
,
Wang
,
B.
,
Gao
,
R. Q.
, and
Yan
,
Q. Q.
,
2023
, “
Octadecyltrimethoxysilane Modified Freeze-Drying Magnesium Silicate Hydroxide Towards High-Performance Wear-Resistance: Synthesis, Characterization, and Tribological Evaluation
,”
Wear
,
534–535
, p.
205153
.
13.
Gao
,
K.
,
Chang
,
Q. Y.
,
Wang
,
B.
,
Zhou
,
N. N.
, and
Qing
,
T.
,
2018
, “
The Tribological Performances of Modified Magnesium Silicate Hydroxide as Lubricant Additive
,”
Tribol. Int.
,
121
, pp.
64
70
.
14.
Lee
,
C.
,
Wei
,
X. D.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.
15.
Xu
,
L.
,
Ma
,
T. B.
,
Hu
,
Y. Z.
, and
Wang
,
H.
,
2011
, “
Vanishing Stick-Slip Friction in Few-Layer Graphenes: The Thickness Effect
,”
Nanotechnology
,
22
(
28
), p.
285708
.
16.
Wang
,
B.
,
Chang
,
Q. Y.
, and
Gao
,
K.
,
2019
, “
Synergistic Tribological Properties of Synthetic Magnesium Silicate Hydroxide Combined With Amphiphilic Molecules
,”
FU Mech. Eng.
,
17
(
1
), pp.
65
74
.
17.
Wang
,
K.
,
Chang
,
Q. Y.
, and
Gao
,
R. Q.
,
2022
, “
Ultra-Low Wear and Anti-Oxidation Properties of Microcrystalline Graphite Oxide-Magnesium Silicate Hydroxide Composite Nanoadditives in the Poly-Alpha-Olefin Base Oil
,”
ASME J. Tribol.
,
144
(
3
), p.
031901
.
18.
Lee
,
H.
,
Lee
,
N.
,
Seo
,
Y.
,
Eom
,
J.
, and
Lee
,
S.
,
2009
, “
Comparison of Frictional Forces on Graphene and Graphite
,”
Nanotechnology
,
20
(
32
), p.
325701
.
19.
Roache
,
D. C.
,
Bumgardner
,
C. H.
,
Zhang
,
Y. Y.
,
Edwards
,
D.
,
DeGonia
,
D.
,
Rock
,
B.
, and
Li
,
X. D.
,
2021
, “
Chemo-Mechanical Characterization of Phosphorus and Sulfur Containing Ashless Tribofilms on Hypoid Gear Teeth
,”
Tribol. Int.
,
158
, p.
106926
.
20.
Huang
,
H. D.
,
Tu
,
J. P.
,
Gan
,
L. P.
, and
Li
,
C. Z.
,
2006
, “
An Investigation on Tribological Properties of Graphite Nanosheets as Oil Additive
,”
Wear
,
261
(
2
), pp.
140
144
.
21.
Peng
,
L.
,
Xu
,
Z.
,
Liu
,
Z.
,
Wei
,
Y. Y.
,
Sun
,
H. Y.
,
Li
,
Z.
,
Zhao
,
X. L.
, and
Gao
,
C.
,
2015
, “
An Iron-Based Green Approach to 1-h Production of Single-Layer Graphene Oxide
,”
Nat. Commun.
,
6
(
1
), p.
5716
.
22.
Hu
,
Y. W.
,
Wang
,
Y. X.
,
Zeng
,
Z. X.
,
Zhao
,
H. C.
,
Li
,
J. L.
,
Ge
,
X. W.
,
Wang
,
L. P.
,
Xue
,
Q.
,
Mao
,
C. L.
, and
Chen
,
S. J.
,
2019
, “
BLG-RGO: A Novel Nanoadditive for Water-Based Lubricant
,”
Tribol. Int.
,
135
, pp.
277
286
.
23.
Du
,
S. N.
,
Sun
,
J. L.
, and
Wu
,
P.
,
2018
, “
Preparation, Characterization and Lubrication Performances of Graphene Oxide-TiO2 Nanofluid in Rolling Strips
,”
Carbon
,
140
, pp.
338
351
.
24.
Ren
,
P. G.
,
Yan
,
D. X.
,
Ji
,
X.
,
Chen
,
T.
, and
Li
,
Z. M.
,
2011
, “
Temperature Dependence of Graphene Oxide Reduced by Hydrazine Hydrate
,”
Nanotechnology
,
22
(
5
), p.
055705
.
25.
Lin
,
Y.
,
Jin
,
J.
, and
Song
,
M.
,
2011
, “
Preparation and Characterisation of Covalent Polymer Functionalized Graphene Oxide
,”
J. Mater. Chem.
,
21
(
10
), pp.
3455
3461
.
26.
Gao
,
K.
,
Chang
,
Q. Y.
,
Wang
,
B.
,
Zhou
,
N. N.
, and
Qing
,
T.
,
2018
, “
The Purification and Tribological Property of the Synthetic Magnesium Silicate Hydroxide Modified by Oleic Acid
,”
Lubr. Sci.
,
30
(
7
), pp.
377
385
.
27.
Fan
,
K.
,
Liu
,
J.
,
Wang
,
X.
,
Liu
,
Y.
,
Lai
,
W. C.
,
Gao
,
S. S.
,
Qin
,
J. Q.
, and
Liu
,
X. Y.
,
2018
, “
Towards Enhanced Tribological Performance as Water-Based Lubricant Additive: Selective Fluorination of Graphene Oxide at Mild Temperature
,”
J. Colloid Interface Sci.
,
531
, pp.
138
147
.
28.
Yang
,
D.
,
Velamakanni
,
A.
,
Bozoklu
,
G.
,
Park
,
S.
,
Stoller
,
M.
,
Piner
,
R. D.
,
Stankovich
,
S.
, et al
,
2009
, “
Chemical Analysis of Graphene Oxide Films After Heat and Chemical Treatments by X-Ray Photoelectron and Micro-Raman Spectroscopy
,”
Carbon
,
47
(
1
), pp.
145
152
.
29.
Cusano
,
C.
, and
Sliney
,
H. E.
,
1982
, “
Dynamics of Solid Dispersions in Oil During the Lubrication of Point Contacts. Part 2: Molybdenum Disulfide
,”
ASLE Trans.
,
25
(
2
), pp.
190
197
.
30.
Elomaa
,
O.
,
Singh
,
V. K.
,
Iyer
,
A.
,
Hakala
,
T. J.
, and
Koskinen
,
J.
,
2015
, “
Graphene Oxide in Water Lubrication on Diamond-Like Carbon vs. Stainless Steel High-Load Contacts
,”
Diamond Relat. Mater.
,
52
, pp.
43
48
.
31.
Zhang
,
Y. Y.
, and
Li
,
X. D.
,
2017
, “
Bioinspired, Graphene/Al2O3 Doubly Reinforced Aluminum Composites With High Strength and Toughness
,”
Nano Lett.
,
17
(
11
), pp.
6907
6915
.
32.
Zhang
,
Y. Y.
,
Heim
,
F. M.
,
Bartlett
,
J. L.
,
Song
,
N. N.
,
Isheim
,
D.
, and
Li
,
X. D.
,
2019
, “
Bioinspired, Graphene-Enabled Ni Composites with High Strength and Toughness
,”
Sci. Adv.
,
5
(
5
).
33.
Qiang
,
L. H.
,
Li
,
Z. F.
,
Zhao
,
T. Q.
,
Zhong
,
S. L.
,
Wang
,
H. Y.
, and
Cui
,
X. J.
,
2013
, “
Atomic-Scale Interactions of the Interface Between Chitosan and Fe3O4
,”
Colloids Surf., A
,
419
, pp.
125
132
.
34.
Lu
,
J. W.
,
Sun
,
M. J.
,
Yuan
,
Z. T.
,
Qi
,
S. L.
,
Tong
,
Z. Y.
,
Li
,
L. X.
, and
Meng
,
Q. Y.
,
2019
, “
Innovative Insight for Sodium Hexametaphosphate Interaction With Serpentine
,”
Colloids Surf., A
,
560
, pp.
35
41
.
35.
Li
,
X. D.
, and
Bhushan
,
B.
,
2002
, “
Nanofatigue Studies of Ultrathin Hard Carbon Overcoats Used in Magnetic Storage Devices
,”
J. Appl. Phys.
,
91
(
10
), pp.
8334
8336
.
36.
Li
,
X. D.
, and
Bhushan
,
B.
,
2002
, “
Development of a Nanoscale Fatigue Measurement Technique and Its Application to Ultrathin Amorphous Carbon Coatings
,”
Scr. Mater.
,
47
(
7
), pp.
473
479
.
37.
Li
,
X. D.
, and
Bhushan
,
B.
,
1998
, “
Micromechanical and Tribological Characterization of Hard Amorphous Carbon Coatings as Thin as 5 nm for Magnetic Recording Heads
,”
Wear
,
220
(
1
), pp.
51
58
.
You do not currently have access to this content.