Abstract

The white etching crack (WEC) behavior of five model lubricants and one fully formulated gear oil has been investigated using the FE8 test rig. The varying concentrations of branched zinc dialkydithiophosphate (ZDDP) and overbased calcium sulfonate (OBCaSu) have been studied. The results reveal that a high concentration of branched ZDDP and OBCaSu is critical to the WEC failure, while a low concentration is not. This is attributed to tribofilm structure, composition, and mechanical properties. Tribofilms formed from less-critical lubricants show up to 110% higher hardness and 80% higher elastic modulus than the WEC-critical lubricants. Rapid tribofilm growth and higher amounts of certain tribofilm species like FeO, CaO, and ZnO appear to have a weak tribofilm structure that potentially could promote hydrogen permeation. The FeO in tribofilm is considered to act as a catalytic site for hydrogen dissociation, leading potentially to hydrogen diffusion. Changing from a branched to a linear ZDDP postpones the WEC significantly but does not prevent it. Replacing a bad reference WEC-critical oil with a good reference oil could postpone the WEC failure but cannot be prevented. The fully formulated gear oil that formed thin tribofilm and less-critical tribofilm species did not show WEC. Special micropitting rig (MPR) tests made using specimens with non-metallic inclusions showed an earlier WEC failure than those with standard specimens without such non-metallic inclusions, suggesting that non-metallic inclusions could promote WEC even in the absence of WEC-critical additives and water.

References

1.
Tamada
,
K.
, and
Tanaka
,
H.
,
1996
, “
Occurrence of Brittle Flaking on Bearings Used for Automotive Electrical Instruments and Auxiliary Devices
,”
Wear
,
199
(
2
), pp.
245
252
.
2.
Murakami
,
Y.
,
Naka
,
M.
,
Iwamoto
,
A.
, and
Chatell
,
G.
,
1995
, “
Long Life Bearings for Automotive Alternator Applications
,”
Proceedings of the International Congress Exposition
,
Detroit, MI
,
Feb. 1
, pp.
1
14
.
3.
Kino
,
N.
, and
Otani
,
K.
,
2003
, “
The Influence of Hydrogen on Rolling Contact Fatigue Life and Its Improvement
,”
JSAE Rev.
,
24
(
3
), pp.
289
294
.
4.
Evans
,
M.-H.
,
2016
, “
An Updated Review: White Etching Cracks (WECs) and Axial Cracks in Wind Turbine Gearbox Bearings
,”
Mater. Sci. Technol.
,
32
(
11
), pp.
1133
1169
.
5.
Evans
,
M.-H.
,
2012
, “
White Structure Flaking (WSF) in Wind Turbine Gearbox Bearings: Effects of Butterflies and White Etching Cracks (WECs)
,”
Mater. Sci. Technol.
,
28
(
1
), pp.
3
22
.
6.
Evans
,
M.-H.
,
Richardson
,
A. D.
,
Wang
,
L.
, and
Wood
,
R. J. K.
,
2013
, “
Serial Sectioning Investigation of Butterfly and White Etching Crack (WEC) Formation in Wind Turbine Gearbox Bearings
,”
Wear
,
302
(
1
), pp.
1573
1582
.
7.
Greco
,
A.
,
Sheng
,
S.
,
Keller
,
J.
, and
Erdemir
,
A.
,
2013
, “
Material Wear and Fatigue in Wind Turbine Systems
,”
Wear
,
302
(
1–2
), pp.
1583
1591
.
8.
Herr
,
D.
, and
Heidenreich
,
D.
,
2015
, “Understanding the Root Causes of Axial Cracking in Wind Turbine Gearbox Bearings,” Bearing News Magazine, pp.
38
45
.
9.
Bruce
,
T.
,
Rounding
,
E.
,
Long
,
H.
, and
Dwyer-Joyce
,
R. S.
,
2015
, “
Characterisation of White Etching Crack Damage in Wind Turbine Gearbox Bearings
,”
Wear
,
338
(
339
), pp.
164
177
.
10.
Keller
,
J.
,
2021
,
WhiteWind: White Etching Crack (WEC) Bearing Failure in Wind Turbines: Cooperative Research and Development Final Report, CRADA No. CRD-18-00758
,
National Renewable Energy Laboratory
,
Golden, CO
. NREL/TP-5000-81232
11.
Errichello
,
R.
,
Budny
,
R.
, and
Eckert
,
R.
,
2013
, “
Investigations of Bearing Failures Associated With White Etching Areas (WEAs) in Wind Turbine Gearboxes
,”
Tribol. Trans.
,
56
(
6
), pp.
1069
1076
.
12.
Evans
,
M.-H.
,
Richardson
,
A. D.
,
Wang
,
L.
,
Wood
,
R. J. K.
, and
Anderson
,
W. B.
,
2014
, “
Confirming Subsurface Initiation at Non-Metallic Inclusions as One Mechanism for White Etching Crack (WEC) Formation
,”
Tribol. Int.
,
75
, pp.
87
97
.
13.
Nikolic
,
K.
,
Wispelaere
,
J. D.
,
Ravi
,
G.
,
Hertele
,
S.
,
Depover
,
T.
,
Verbeken
,
K.
, and
Petrov
,
R. H.
,
2023
, “
Confirming Debonding of Non-Metallic Inclusions as an Important Factor in Damage Initiation in Bearing Steel
,”
Metals
,
13
(
6
), p.
1113
.
14.
Richardson
,
A. D.
,
Evans
,
M.-H.
,
Wang
,
L.
,
Wood
,
R. J. K.
,
Ingram
,
M.
, and
Meuth
,
B.
,
2017
, “
The Evolution of White Etching Cracks (WECs) in Rolling Contact Fatigue Tested 100Cr6 Steel
,”
Tribol. Lett.
,
66
(
1
), p.
6
.
15.
Evans
,
M.-H.
,
Richardson
,
A. D.
,
Wang
,
L.
, and
Wood
,
R. J. K.
,
2013
, “
Effect of Hydrogen on Butterfly and White Etching Crack (WEC) Formation Under Rolling Contact Fatigue (RCF)
,”
Wear
,
306
(
1
), pp.
226
241
.
16.
Bruce
,
T.
,
Long
,
H.
,
Slatter
,
T.
, and
Dwyer-Joyce
,
R. S.
,
2016
, “
Formation of White Etching Crack at Manganese Sulfide (MnS) Inclusions in Bearing Steel Due to Hammering Impact Loading
,”
Wind Energy
,
19
(
10
), pp.
1903
1915
.
17.
Bruce
,
T.
,
Long
,
H.
, and
Dwyer-Joyce
,
R. S.
,
2018
, “
Threshold Maps for Inclusion-Initiated Micro-Cracks and White Etching Areas in Bearing Steel: The Role of Impact Loading and Surface Sliding
,”
Tribol. Lett.
,
66
(
3
), p.
111
.
18.
Evans
,
M.-H.
,
Wang
,
L.
, and
Wood
,
R. J. K.
,
2013
, “
White Etching Crack (WEC) Investigation by Serial Sectioning, Focused Ion Beam and 3-D Crack Modelling
,”
Tribol. Int.
,
65
, pp.
146
160
.
19.
Kiranbabu
,
S.
,
Morsdorf
,
L.
,
Gonzalez
,
I.
,
Kölling
,
M.
,
Broß
,
C.
,
Ponge
,
D.
,
Herbig
,
M.
, and
Mayweg
,
D.
,
2013
, “
Influence of MnS Inclusion Characteristics on Generation of White Etching Cracks in 100Cr6 Bearing Steel
,”
Wear
,
534–535
, p.
205129
.
20.
Gould
,
B.
,
Greco
,
A.
,
Stadler
,
K.
,
Vegter
,
E.
, and
Xiao
,
X.
,
2017
, “
Using Advanced Tomography Techniques to Investigate the Development of White Etching Cracks in a Prematurely Failed Field Bearing
,”
Tribol. Int.
,
116
, pp.
362
370
.
21.
Sreeraj
,
K.
, and
Ramkumar
,
P.
,
2020
, “
Comprehensive Analysis of Effects of Dynamic Load Frequency and Hydrogenation to Instigate White Etching Areas (WEAs) Formation Under Severe Sliding Condition of Bearing Steel
,”
Tribol. Int.
,
144
, p.
106131
.
22.
Davis
,
L.
, and
Ramkumar
,
P.
,
2022
, “
Experimental Investigation on the Performance of AISI 440C Martensitic Stainless Steel Against the Formation of White Etching Areas Under Sliding Dynamic Loading
,”
Tribol. Mater. Surf. Interfaces
,
16
(
1
), pp.
57
67
.
23.
Davis
,
L.
,
Ramkumar
,
P.
,
Panda
,
A.
,
Franken
,
M.
,
Vengudsamy
,
B.
, and
Kondratiuk
,
J.
,
2024
, “
Microstructure Alterations and White Etching Area Formation in Bearing Steels Under High-Frequency Dynamic Loading
,”
Tribol. Int.
,
196
, p.
109676
.
24.
Gutiérrez Guzmán
,
F.
,
Oezel
,
M. O.
,
Jacobs
,
G.
,
Burghardt
,
G.
,
Broeckmann
,
C.
, and
Janitzky
,
T.
,
2018
, “
Influence of Slip and Lubrication Regime on the Formation of White Etching Cracks on a Two-Disc Test Rig
,”
Lubricants
,
6
(
1
), p.
8
.
25.
Danielsen
,
H. K.
,
Gutiérrez Guzmán
,
F.
,
Dahl
,
K. V.
,
Li
,
Y. J.
,
Wu
,
J.
,
Jacobs
,
G.
,
Burghardt
,
G.
, et al
,
2017
, “
Multiscale Characterization of White Etching Cracks (WEC) in a 100Cr6 Bearing From a Thrust Bearing Test Rig
,”
Wear
,
370
, pp.
73
82
.
26.
Franke
,
J.
,
Carey
,
J. T.
,
Korres
,
S.
,
Haque
,
T.
,
Jacobs
,
P. W.
,
Loos
,
J.
, and
Kruhoeffer
,
W.
,
2018
, “
White Etching Cracking—Simulation in Bearing Rig and Bench Tests
,”
Tribol. Trans.
,
61
(
3
), pp.
403
413
.
27.
Paladugu
,
M.
,
Lucas
,
D. R.
, and
Hyde
,
R. S.
,
2018
, “
Effect of Lubricants on Bearing Damage in Rolling-Sliding Conditions: Evolution of White Etching Cracks
,”
Wear
,
398
, pp.
165
177
.
28.
Ciruna
,
J. A.
, and
Szieleit
,
H. J.
,
1973
, “
The Effect of Hydrogen on the Rolling Contact Fatigue Life of AISI 52100 and 440C Steel Balls
,”
Wear
,
24
(
1
), pp.
107
118
.
29.
Ruellan
,
A.
,
Ville
,
F.
,
Kleber
,
X.
,
Arnaudon
,
A.
, and
Girodin
,
D.
,
2014
, “
Understanding White Etching Cracks in Rolling Element Bearings: The Effect of Hydrogen Charging on the Formation Mechanisms
,”
J. Eng. Tribol.
,
228
(
11
), pp.
1252
1265
.
30.
Kohara
,
M.
,
Kawamura
,
T.
, and
Egami
,
M.
,
2006
, “
Study on Mechanism of Hydrogen Generation From Lubricants
,”
Tribol. Trans.
,
49
(
1
), pp.
53
60
.
31.
Uyama
,
H.
,
Yamada
,
H.
,
Hidaka
,
H.
, and
Mitamura
,
N.
,
2011
, “
The Effects of Hydrogen on Microstructural Change and Surface Originated Flaking in Rolling Contact Fatigue
,”
Tribol. Online
,
6
(
2
), pp.
123
132
.
32.
Oezel
,
M.
,
Schwedt
,
A.
,
Janitzky
,
T.
,
Kelley
,
R.
,
Bouchet-Marquis
,
C.
,
Pullan
,
L.
,
Broeckmann
,
C.
, and
Mayer
,
J.
,
2018
, “
Formation of White Etching Areas in SAE 52100 Bearing Steel Under Rolling Contact Fatigue–Influence of Diffusible Hydrogen
,”
Wear
,
414
, pp.
352
365
.
33.
Vegter
,
R. H.
,
Slycke
,
J. T.
,
Beswick
,
J.
, and
Dean
,
S. W.
,
2010
, “
The Role of Hydrogen on Rolling Contact Fatigue Response of Rolling Element Bearings
,”
J. ASTM Int.
,
7
(
2
), pp.
201
217
.
34.
Gould
,
B.
,
Demas
,
N. G.
,
Pollard
,
G.
,
Rydel
,
J. J.
,
Ingram
,
M.
, and
Greco
,
A.
,
2019
, “
The Effect of Lubricant Composition on White Etching Crack Failures
,”
Tribol. Lett.
,
67
(
7
), pp.
246
262
.
35.
Haque
,
T.
,
Korres
,
S.
,
Carey
,
J. T.
,
Jacobs
,
P. W.
,
Loos
,
J.
, and
Franke
,
J.
,
2018
, “
Lubricant Effects on White Etching Cracking Failures in Thrust Bearing Rig Tests
,”
Tribol. Trans.
,
61
(
6
), pp.
979
990
.
36.
Richardson
,
A. D.
,
Evans
,
M. H.
,
Wang
,
L.
,
Ingram
,
M.
,
Rowland
,
Z.
,
Llanos
,
G.
, and
Wood
,
R. J. K.
,
2019
, “
The Effect of Over-Based Calcium Sulfonate Detergent Additives on White Etching Crack (WEC) Formation in Rolling Contact Fatigue Tested 100Cr6 Steel
,”
Tribol. Int.
,
133
, pp.
246
262
.
37.
Wranik
,
J.
,
Holweger
,
W.
,
Lutz
,
T.
,
Albrecht
,
P.
,
Reichel
,
B.
, and
Wang
,
L.
,
2022
, “
A Study on Decisive Early Stages in White Etching Crack Formation Induced by Lubrication
,”
Lubricants
,
10
(
5
), p.
96
.
38.
Steinweg
,
F.
,
Mikitisin
,
A.
,
Janitzky
,
T.
,
Richter
,
S.
,
Weirich
,
T.
,
Mayer
,
J.
, and
Broeckmann
,
C.
,
2023
, “
Influence of Additive-Derived Reaction Layers on White Etching Crack Failure of SAE 52100 Bearing Steel Under Rolling Contact Loading
,”
Tribol. Int.
,
180
, p.
108239
.
39.
Loos
,
J.
,
Bergmann
,
I.
, and
Goss
,
M.
,
2016
, “
Influence of Currents From Electrostatic Charges on WEC Formation in Rolling Bearings
,”
Tribol. Trans.
,
59
(
5
), pp.
865
875
.
40.
Loos
,
J.
,
Bergmann
,
I.
, and
Goss
,
M.
,
2021
, “
Influence of High Electrical Currents on WEC Formation in Rolling Bearings
,”
Trib. Trans.
,
64
(
4
), pp.
708
720
.
41.
Tung
,
P.-Y.
,
McEniry
,
E.
, and
Herbig
,
M.
,
2021
, “
The Role of Electric Current in the Formation of White-Etching-Cracks
,”
Phil. Mag.
,
101
(
1
), pp.
59
76
.
42.
Plazenet
,
T.
, and
Boileau
,
T.
,
2021
, “
Overview of Bearing White Etching Cracks Due to Electrical Currents
,”
IEEE 13th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)
,
Dallas, TX
,
Aug. 22–25
, pp.
440
446
.
43.
Steinweg
,
F.
,
Mikitisin
,
A.
,
Oezel
,
M.
,
Schwedt
,
A.
,
Janitzky
,
T.
,
Hallstedt
,
B.
,
Broeckmann
,
C.
, and
Mayer
,
J.
,
2022
, “
Formation of White Etching Cracks Under Electrical Current Flow-Influence of Load, Slip and Polarity
,”
Wear
,
504–505
, p.
204394
.
44.
Demas
,
N. D.
,
Lorenzo-Martin
,
C.
,
Luna
,
R.
,
Erck
,
R. A.
, and
Greco
,
A.
,
2023
, “
The Effect of Current and Lambda on White-Etch-Crack Failures
,”
Trib. Int.
,
189
, p.
108951
.
45.
Holweger
,
W.
,
Bobbio
,
L.
,
Mo
,
Z.
,
Fliege
,
J.
,
Goerlach
,
B.
, and
Simon
,
B.
,
2023
, “
A Validated Computational Study of Lubricants Under White Etching Crack Conditions Exposed to Electrical Fields
,”
Lubricants
,
11
(
1
), p.
45
.
46.
Esmaeili
,
K.
,
Wang
,
L.
,
Harvey
,
T.
,
White
,
N. M.
, and
Holweger
,
W.
,
2023
, “
A Study on the Influence of Electrical Discharges on the Formation of White Etching Cracks in Oil-Lubricated Rolling Contacts and Their Detection Using Electrostatic Sensing Technique
,”
Lubricants
,
11
(
4
), pp.
1
28
.
47.
Zuercher
,
M.
,
Schlücker
,
E.
,
Spaeth
,
C.
, and
Holweger
,
W.
,
2024
, “
Multi-Parametric Investigations on White Etching Crack Formation in Deep Grove Ball Bearings
,”
Lubricants
,
12
(
10
), pp.
328
343
.
48.
Solano-Alvarez
,
W.
, and
Bhadeshia
,
H. K. D. H.
,
2014
, “
White-Etching Matter in Bearing Steels. Part I: Controlled Cracking of 52100 Steel
,”
Metall. Mater. Trans. A
,
45A
(
11
), pp.
4907
4915
.
49.
Solano-Alvarez
,
W.
, and
Bhadeshia
,
H. K. D. H.
,
2014
, “
White-Etching Matter in Bearing Steels. Part B: Distinguishing Cause and Effect in Bearing Steel Failure
,”
Metall. Mater. Trans. A
,
45A
(
11
), pp.
4916
4931
.
50.
Manieri
,
F.
,
Stadler
,
K.
,
Morales-Espejel
,
G. E.
, and
Kadiric
,
A.
,
2019
, “
The Origins of White Etching Cracks and Their Significance to Rolling Bearing Failures
,”
Int. J. Fatigue
,
120
, pp.
107
133
.
51.
Kadin
,
Y.
, and
Sherif
,
M. Y.
,
2017
, “
Energy Dissipation at Rubbing Crack Faces in Rolling Contact Fatigue as the Mechanism of White Etching Area Formation
,”
Int. J. Fatigue
,
96
, pp.
114
126
.
52.
Harada
,
H.
,
Mikami
,
T.
,
Shibata
,
M.
,
Sokai
,
D.
,
Yamamoto
,
A.
, and
Tsubakino
,
H.
,
2005
, “
Microstructural Changes and Crack Initiation With White Etching Area Formation Under Rolling/Sliding Contact in Bearing Steel
,”
ISIJ Int.
,
45
(
12
), pp.
1897
1902
.
53.
Li
,
S.-X.
,
Su
,
Y.-S.
,
Shu
,
X.-D.
, and
Chen
,
J.-J.
,
2017
, “
Microstructural Evolution in Bearing Steel Under Rolling Contact Fatigue
,”
Wear
,
380
, pp.
146
153
.
54.
Sarkar
,
S.
,
Johansson
,
H.
, and
Berbyuk
,
V.
,
2023
, “
Transient Torque Reversals in Indirect Drive Wind Turbines
,”
Wind Energy
,
26
(
7
), pp.
691
716
.
55.
Sarkar
,
S.
,
Johansson
,
H.
, and
Berbyuk
,
V.
,
2023
, “
Mitigation of Transient Torque Reversals in Indirect Drive Wind Turbine Drivetrains
,”
Wind Energy
,
26
(
8
), pp.
803
825
.
56.
Liang
,
X. Z.
, and
Rivera-Díaz-del-Castillo
,
P. E. J.
,
2022
, “
Hydrogen-Accelerated White Etching Area Formation in Bearings Under Rolling Contact Fatigue
,”
Int. J. Fatigue
,
159
, p.
106753
.
57.
Lu
,
R.
,
Minami
,
I.
,
Nanao
,
H.
, and
Mori
,
S.
,
2007
, “
Investigation of Decomposition of Hydrocarbon Oil on the Nascent Surface of Steel
,”
Tribol. Lett.
,
27
(1), pp.
25
30
.
58.
Lu
,
R.
,
Mori
,
S.
,
Kubo
,
T.
, and
Nanao
,
H.
,
2009
, “
Effect of Sulfur-Containing Additive on the Decomposition of Multialkylated Cyclopentane Oil on the Nascent Steel Surface
,”
Wear
,
267
(
9–10
), pp.
1430
1435
.
59.
Kuerten
,
D.
,
Winzer
,
N.
,
Kailer
,
A.
,
Pfeiffer
,
W.
,
Spallek
,
R.
, and
Scherge
,
M.
,
2016
, “
In-Situ Detection of Hydrogen Evolution in a Lubricated Sliding Pin on Disk Test Under High Vacuum
,”
Tribol. Int.
,
93
, pp.
324
331
.
60.
Esfahani
,
E. A.
,
Morina
,
A.
,
Han
,
B.
,
Nedelcu
,
I.
, and
van Eijk
,
M. C. P.
,
2017
, “
Development of a Novel In-Situ Technique for Hydrogen Uptake Evaluation From a Lubricated Tribocontact
,”
Tribol. Int.
,
113
, pp.
433
442
.
61.
Boiadijeva-Scherzer
,
T.
,
Mirkova
,
L.
,
Fafilek
,
G.
,
Reinbold
,
J.
,
Kronberger
,
H.
,
Stache
,
H.
,
Bodesheim
,
G.
, and
Monev
,
M.
,
2022
, “
Hydrogen Permeation Through Steel During Cathodic Polarization of Lubricating Oils in a Modified Devanathan-Stachurski Cell
,”
Sci. Rep.
,
12
(1), p.
18662
.
62.
Reinbold
,
J.
,
Boiadijeva-Scherzer
,
T.
,
Stache
,
H.
,
Vengudusamy
,
B.
, and
Fafilek
,
G.
,
2023
, “
Temperature Effects in Hydrogen Permeation Measurements Under Lubricated Sliding Conditions
,”
Tribol. Int.
,
180
, p.
108214
.
63.
Richardson
,
A. D.
,
Evans
,
M.-H.
,
Wang
,
L.
,
Wood
,
R. J. K.
, and
Ingram
,
M.
,
2018
, “
Thermal Desorption Analysis of Hydrogen in Non-Hydrogen-Charged Rolling Contact Fatigue-Tested 100Cr6 Steel
,”
Tribol. Lett.
,
66
(1), p.
4
.
64.
Gould
,
B.
, and
Greco
,
A.
,
2015
, “
The Influence of Sliding and Contact Severity on the Generation of White Etching Cracks
,”
Tribol. Lett.
,
60
(2), pp.
1
13
.
65.
Gould
,
B.
, and
Greco
,
A.
,
2016
, “
Investigating the Process of White Etching Crack Initiation in Bearing Steel
,”
Tribol. Lett.
,
62
(2), pp.
1
14
.
66.
Wranik
,
J.
,
Holweger
,
W.
, and
Wang
,
L.
,
2024
, “
The Influence of Peripheral Components in Test Rig Creation of White Etching Cracks
,”
Lubricants
,
12
(2), p.
45
.
67.
Danielsen
,
H. K.
,
Gutierrez Guzman
,
F.
,
Muskulus
,
M.
,
Rasmussen
,
B. H.
,
Shirani
,
M.
,
Cornel
,
D.
,
Sauvage
,
P.
,
Wu
,
J.
,
Petrov
,
R.
, and
Jacobs
,
G.
,
2019
, “
FE8 Type Laboratory Testing of White Etching Crack (WEC) Bearing Failure Mode in 100Cr6
,”
Wear
,
434–435
, p.
202962
.
68.
Danielsen
,
H. K.
,
Gutierrez Guzman
,
F.
,
Faester
,
S.
,
Shirani
,
M.
, and
Rasmussen
,
B. H.
,
2022
, “
Accelerated White Etch Cracking (WEC) FE8 Type Tests of Different Bearing Steels Using Ceramic Rollers
,”
Wear
,
494–495
, p.
204230
.
69.
Topolovec-Miklozic
,
K.
,
Forbus
,
T.
, and
Spikes
,
H.
,
2007
, “
Film Forming and Roughness of ZDDP Antiwear Films
,”
Tribol. Lett.
,
26
(2), pp.
161
171
.
70.
Topolovec-Miklozic
,
K.
,
Forbus
,
T.
, and
Spikes
,
H.
,
2008
, “
Film Forming and Friction Properties of Overbased Calcium Sulfonate Detergents
,”
Tribol. Lett.
,
29
(1), pp.
33
44
.
71.
Al-Tameemi
,
H. A.
, and
Long
,
H.
,
2020
, “
Finite Element Simulation of Subsurface Initiated Damage From Non-Metallic Inclusions in Wind Turbine Gearbox Bearings
,”
Int. J. Fatigue
,
131
, p.
105347
.
72.
Zhang
,
S.
,
Li
,
K.
,
Ma
,
Y.
,
Bu
,
Y.
,
Liang
,
Z.
,
Yang
,
Z.
, and
Zhang
,
J.
,
2023
, “
The Adsorption Mechanism of Hydrogen on FeO Crystal Surfaces: A Density Functional Theory Study
,”
Nanomaterials
,
13
(14), p.
2051
.
73.
Ooi
,
S. W.
,
Yan
,
P.
, and
Vegter
,
R. H.
,
2019
, “
Black Oxide Coating and Its Effectiveness on Prevention of Hydrogen Uptake
,”
Mater. Sci. Technol.
,
35
(1), pp.
12
25
.
74.
Al-Tameemi
,
H. A.
,
Long
,
H.
, and
Dwyer-Joyce
,
R. S.
,
2019
, “
Damage Characterisation of White Etching Cracks in a Black Oxide Coated Wind Turbine Gearbox Bearing
,”
Wear
,
432–433
, p.
102923
.
75.
Al-Tameemi
,
H. A.
,
Long
,
H.
, and
Dwyer-Joyce
,
R. S.
,
2019
, “
Investigation of Wind Turbine Gearbox Bearing Subsurface Damage Considering Transient Loading
,”
WindEurope Summit
,
Hamburg, Germany
,
Sept. 27–29
, pp.
1
8
.
You do not currently have access to this content.