Graphical Abstract Figure

Program flowchart

Graphical Abstract Figure

Program flowchart

Close modal

Abstract

A ball screw is a critical drive component capable of converting force into motion, with widespread applications in the high-precision mechanisms of various machine tools. The degradation in precision attributed to ball-screw wear significantly impacts machine tool accuracy. Current ball-screw wear models lack consideration for the ramifications of radial forces and ball size errors. This study introduces a pioneering approach by formulating a coupled model that integrates screw wear, ball wear, and preload degradation. Through rigorous analysis, we discern the multifaceted influences of axial force, radial force, preload adjustments, and ball size precision on the positional accuracy of ball screws. By elucidating the intricate interplay among these parameters, this study offers crucial theoretical insights into the selection and optimization of ball screws, thereby fostering advancements in machine tool design and performance.

References

1.
Lee
,
K. I.
, and
Yang
,
S.-H.
,
2013
, “
Measurement and Verification of Position-Independent Geometric Errors of a Five-Axis Machine Tool Using a Double Ball-Bar
,”
Int. J. Mach. Tools Manuf.
,
70
, pp.
45
52
.
2.
Niu
,
P.
,
Cheng
,
Q.
,
Zhang
,
T.
,
Yang
,
C.
,
Zhang
,
Z.
, and
Liu
,
Z.
,
2023
, “
Hyperstatic Mechanics Analysis of Guideway Assembly and Motion Errors Prediction Method Under Thread Friction Coefficient Uncertainties
,”
Tribol. Int.
,
180
, p.
108275
.
3.
Zhang
,
L.-C.
, and
Zhou
,
C.-G.
,
2022
, “
Experimental Study on the Coefficient of Friction of the Ball Screw
,”
ASME J. Tribol.
,
144
(
3
), p.
031601
.
4.
Jiang
,
S.
, and
Zhu
,
Y.
,
2022
, “
Axial Static Stiffness of Ball Screw Feed Drive System Incorporating Flexibility of Ball Screw and Rolling Bearing
,”
ASME J. Tribol.
,
144
(
10
), p.
101203
.
5.
Zhou
,
C.-G.
,
Wang
,
L.-D.
,
Shen
,
J.-W.
,
Chen
,
C.-H.
,
Ou
,
Y.
, and
Feng
,
H. T.
,
2022
, “
Wear Characterization of Raceway Surface Profiles of Ball Screws
,”
ASME J. Tribol.
,
144
(
11
), p.
111701
.
6.
Lin
,
B.
,
Duan
,
M.
, and
Okwudire
,
C. E.
,
2019
, “
Analytical and Low-Order Numerical Modeling of Ball-to-Ball Contact Friction in Linear Ball Bearings and Ball Screws
,”
ASME J. Tribol.
,
141
(
7
), p.
071401
.
7.
Min
,
X.
, and
Jiang
,
S.
,
2011
, “
A Thermal Model of a Ball Screw Feed Drive System for a Machine Tool
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
225
(
1
), pp.
186
193
.
8.
Nakashima
,
K.
,
Tamaru
,
Y.
, and
Takafuji
,
K.
,
2001
, “
Ultraprecision Positioning by Preload Change of Lead Screws (Characteristics of Fine Feed)
,”
JSME Int. J. C: Mech. Syst. Mach. Elem. Manuf.
,
44
(
3
), pp.
808
815
.
9.
Zhou
,
H.-X.
,
Zhou
,
C.-G.
,
Feng
,
H.-T.
, and
Ou
,
Y.
,
2020
, “
Theoretical and Experimental Analysis of the Preload Degradation of Double-Nut Ball Screws
,”
Precis. Eng.
,
65
, pp.
72
90
.
10.
Chen
,
Y.
, and
Tang
,
W.
,
2014
, “
Dynamic Contact Stiffness Analysis of a Double-Nut Ball Screw Based on a Quasi-Static Method
,”
Mech. Mach. Theory
,
73
, pp.
76
90
.
11.
Bertolaso
,
R.
,
Cheikh
,
M.
,
Barranger
,
Y.
,
Dupré
,
J. C.
,
Germaneau
,
A.
, and
Doumalin
,
P.
,
2014
, “
Experimental and Numerical Study of the Load Distribution in a Ball-Screw System
,”
J. Mech. Sci. Technol.
,
28
(
4
), pp.
1411
1420
.
12.
Wei
,
C.-C.
, and
Lai
,
R.-S.
,
2011
, “
Kinematical Analyses and Transmission Efficiency of a Preloaded Ball Screw Operating at High Rotational Speeds
,”
Mech. Mach. Theory
,
46
(
7
), pp.
880
898
.
13.
Zhen
,
N.
, and
An
,
Q.
,
2018
, “
Analysis of Stress and Fatigue Life of Ball Screw With Considering the Dimension Errors of Balls
,”
Int. J. Mech. Sci.
,
137
, pp.
68
76
.
14.
Mei
,
X.
,
Tsutsumi
,
M.
,
Tao
,
T.
, and
Sun
,
N.
,
2003
, “
Study on the Load Distribution of Ball Screws With Errors
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1257
1269
.
15.
Zhao
,
J.
,
Lin
,
M.
,
Song
,
X.
,
Zhao
,
Y.
, and
Wei
,
N.
,
2021
, “
A Novel Approach to Predict the Precision Sustainability of Ball Screw Under Multidirectional Load States
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
235
(
7
), pp.
1277
1296
.
16.
Tao
,
W.
,
Zhong
,
Y.
,
Feng
,
H.
, and
Wang
,
Y.
,
2013
, “
Model for Wear Prediction of Roller Linear Guides
,”
Wear
,
305
(
1–2
), pp.
260
266
.
17.
Lin
,
M.-C.
,
Ravani
,
B.
, and
Velinsky
,
S.-A.
,
1994
, “
Kinematics of the Ball Screw Mechanism
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
849
855
.
18.
Qi
,
B.-B.
,
Cheng
,
Q.
,
Li
,
S.-L.
,
Liu
,
Z.-F.
, and
Yang
,
C.-B.
,
2021
, “
Precision Loss of Ball Screw Mechanism Under Sliding-Rolling Mixed Motion Behavior
,”
J. Central South Univ.
,
28
(
5
), pp.
1357
1376
.
19.
Zhou
,
C.-G.
,
Zhou
,
H.-X.
, and
Feng
,
H.-T.
,
2020
, “
Experimental Analysis of the Wear Coefficient of Double-Nut Ball Screws
,”
Wear
,
446
, p.
203201
.
20.
Wei
,
C.-C.
, and
Lin
,
J.-F.
,
2003
, “
Kinematic Analysis of the Ball Screw Mechanism Considering Variable Contact Angles and Elastic Deformations
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
717
733
.
21.
Wei
,
C.-C.
,
Liou
,
W.-L.
, and
Lai
,
R.-S.
,
2012
, “
Wear Analysis of the Offset Type Preloaded Ball–Screw Operating at High Speed
,”
Wear
,
292
, pp.
111
123
.
22.
Zhou
,
C.-G.
,
Ou
,
Y.
,
Feng
,
H.-T.
, and
Chen
,
Z.-T.
,
2017
, “
Investigation of the Precision Loss for Ball Screw Raceway Based on the Modified Archard Theory
,”
Ind.. Lubr. Tribol.
,
69
(
2
), pp.
166
173
.
23.
Liu
,
J.
,
Ma
,
C.
, and
Wang
,
S.
,
2020
, “
Precision Loss Modeling Method of Ball Screw Pair
,”
Mech. Syst. Signal Process.
,
135
, p.
106397
.
24.
Zhao
,
J.
,
Lin
,
M.
,
Song
,
X.
, and
Wei
,
N.
,
2021
, “
A Modeling Method for Predicting the Precision Loss of the Preload Double-Nut Ball Screw Induced by Raceway Wear Based on Fractal Theory
,”
Wear
,
486–487
, p.
204065
.
25.
Cheng
,
Q.
,
Qi
,
B.-B.
,
Liu
,
Z.-F.
,
Zhang
,
C.
, and
Xue
,
D.
,
2019
, “
An Accuracy Degradation Analysis of Ball Screw Mechanism Considering Time-Varying Motion and Loading Working Conditions
,”
Mech. Mach. Theory
,
134
, pp.
1
23
.
26.
Qi
,
B.-B.
,
Cheng
,
Q.
,
Liu
,
Z.-F.
, and
Yang
,
C.-B.
,
2020
, “
Optimization Analysis of Structural Parameters for Ball Screw Precision Retention Based on Advanced Neural Fuzzy Network
,”
IEEE Access
,
8
, pp.
199289
199307
.
27.
Zhao
,
J.
,
Lin
,
M.
,
Song
,
X.
, and
Guo
,
Q.
,
2020
, “
Analysis of the Precision Sustainability of the Preload Double-Nut Ball Screw With Consideration of the Raceway Wear
,”
Proc. Ins. Mech. Eng. Part J: J. Eng. Tribol.
,
234
(
9
), pp.
1530
1546
.
28.
International Organization for Standardization
,
2006
, “ISO 3408-4:2006(en). Ball Screws—Part 4: Static Axial Rigidity,” Geneva, Switzerland.
29.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
You do not currently have access to this content.