Abstract

Wear failure of the slipper pair limits axial piston pump life. Most of the current slipper wear models ignore or assume certain factors, resulting in poor calculation accuracy. To better reveal the lubrication and wear laws of slipper pairs, a lubrication-wear dynamic interaction model (LWDIM) is proposed. The slipper considers the effects of tilt and rotation, the impact of fluid–solid–thermal coupling on the viscosity of oil, and the impact of the induced elastic and thermal deformation of the slipper surface on the oil film thickness. In addition, the rough surface contact model is introduced to consider the effects of rough contact force on the support of external loads and surface wear, as well as the impact of rough surface distribution and wear height on the oil film thickness. The considered multifactor is dynamically fed back to update and resolve the oil film thickness and wear distribution. The lubrication characteristics and wear patterns of the lower boot under various working conditions are analyzed by numerical simulation. Experiments show that the mean absolute error (MAE) of the oil film thickness is 0.1 μm, and the MAE of the wear height is 0.83 μm, of which the mean relative error (MRE) of the oil film thickness is only 3.27%, which effectively verifies the calculation accuracy.

References

1.
Yang
,
H. Y.
, and
Pan
,
M.
,
2015
, “
Engineering Research in Fluid Power: A Review
,”
J. Zhejiang Univ., Sci., A
,
16
(
6
), pp.
427
442
.
2.
Tang
,
H. S.
,
Ren
,
Y.
, and
Xiang
,
J. W.
,
2017
, “
A Novel Model for Predicting Thermoelastohydro Dynamic Lubrication Characteristics of Slipper Pair in Axial Piston Pump
,”
Int. J. Mech. Sci.
,
124–125
(
11
), pp.
109
121
.
3.
Ye
,
S. G.
,
Tang
,
H. S.
,
Ren
,
Y.
, and
Xiang
,
J. W.
,
2020
, “
Study on the Load-Carrying Capacity of Surface Textured Slipper Bearing of Axial Piston Pump
,”
Appl. Math. Model.
,
77
(
1
), pp.
554
584
.
4.
Xiao
,
Y. J.
,
Sun
,
Z. Y.
,
Sun
,
G. Z.
, and
Wang
,
L. R.
,
2024
, “
Numerical Study on Dynamic Response of Double Drive Shafts of Dual-Coupled Axial Piston Pump Under Various Load Ratios
,”
Eng. Fail. Anal.
,
163
(Part B), p.
108558
.
5.
Haidak
,
G.
,
Wei
,
X. F.
,
Li
,
F. Y.
,
Larbi
,
A.
, and
Wang
,
D. Y.
,
2022
, “
Heat Effects Modelling on the Efficiency Loss of the Lubricating Interface Between Piston and Cylinder in Axial Piston Pumps
,”
Tribol. Int.
,
175
(
38
), p.
107846
.
6.
Zhang
,
C. C.
,
Zhu
,
C. H.
,
Meng
,
B.
, and
Li
,
S.
,
2021
, “
Challenges and Solutions for High-Speed Aviation Piston Pumps: A Review
,”
Aerospace
,
8
(
12
), p.
8120392
.
7.
Wang
,
H. H.
,
Lin
,
N. M.
,
Yuan
,
S.
,
Liu
,
Z. Q.
,
Yu
,
Y.
,
Zeng
,
Q. F.
,
Fan
,
J. F.
,
Li
,
D. Y.
, and
Wu
,
Y. C.
,
2024
, “
Structural Improvement, Material Selection and Surface Treatment for Improved Tribological Performance of Friction Pairs in Axial Piston Pumps: A Review
,”
Tribol. Int.
,
198
(
3
), p.
109838
.
8.
Lin
,
Y.
,
Wang
,
H. J.
,
Wang
,
H. G.
,
Tang
,
S. S.
,
Hao
,
H. M.
, and
Huang
,
J. H.
,
2024
, “
A Novel Wear Prediction Method and Wear Characteristic Analysis of Piston/Cylinder Pair in Axial Piston Pump
,”
Wear
,
550
(
16
), p.
205402
.
9.
Zhang
,
J. H.
,
Xu
,
H. G.
,
Chen
,
J. Y.
,
Huang
,
W. D.
,
Huang
,
X. C.
,
Lv
,
F.
,
Xu
,
B.
,
Pan
,
M.
, and
Su
,
Q.
,
2022
, “
Modeling and Analysis of the Tilt Behavior of the Cylinder Block in a High-Speed Axial Piston Pump
,”
Mech. Mach. Theory
,
170
(
33
), p.
104735
.
10.
Hu
,
M.
,
Hu
,
Y. P.
, and
Song
,
Q.
,
2023
, “
Thermo-Hydrodynamic Lubrication Analysis of Slipper Pair Considering Wear Profile
,”
Lubricants
,
11
(
5
), pp.
190
204
.
11.
Dowson
,
D.
, and
Hudson
,
J. D.
,
1963
, “
Thermon Hydro Dynamic Analysis of the Infinite Slider Bearing
,”
Proc. Inst. Mech. Eng.
,
4
(
3
), pp.
31
41
.
12.
Schenk
,
A.
,
2014
, “Predicting Lubrication Performance Between the Slipper and Swashplate in Axial Piston Hydraulic Machines,” Purdue University, West Lafayette, pp.
93
124
.
13.
Schenk
,
A.
, and
Ivantysynova
,
M. A.
,
2015
, “
Transient Thermalelstohydrodynamic Lubrication Model for the Slipper/Swashplate in Axial Piston Machines
,”
ASME J. Tribol.
,
137
(
3
), pp.
692
701
.
14.
Hashemi
,
S.
,
Kroker
,
A.
,
Bobach
,
L.
, and
Bartel
,
D.
,
2016
, “
Multibody Dynamics of Pivot Slipper Pad Thrust Bearing in Axial Piston Machines Incorporating Thermal Elastrohydrodynamic and Mixed Lubrication Model
,”
Tribol. Int.
,
96
(
8
), pp.
57
76
.
15.
Hashemi
,
S.
,
Friedrich
,
H.
,
Bobach
,
L.
, and
Bartel
,
D.
,
2017
, “
Validation of a Thermal Elastohydrodynamic Multibody Dynamics Model of the Slipper Pad by Friction Force Measurement in the Axial Piston Pump
,”
Tribol. Int.
,
115
(
32
), pp.
319
337
.
16.
Wang
,
L. W.
,
Xiang
,
G.
,
Huang
,
Y. F.
,
Yang
,
T. Y.
,
Zhou
,
G. W.
, and
Wang
,
J. X.
,
2025
, “
A Mixed Visco-Hyperelastic Hydrodynamic Lubrication Model for Water-Lubricated Rubber Bearings
,”
Int. J. Mech. Sci.
,
286
(
25
), p.
109887
.
17.
Chao
,
Q.
,
Zhang
,
J. H.
,
Xu
,
B.
, and
Wang
,
Q. N.
,
2018
, “
Discussion on the Reynolds Equation for the Slipper Bearing Modeling in Axial Piston Pumps
,”
Tribol. Int.
,
118
(
23
), pp.
140
147
.
18.
Chao
,
Q.
,
Zhang
,
J. H.
,
Xu
,
B.
, and
Wang
,
Q. N.
,
2018
, “
Multi-Position Measurement of Oil Film Thickness Within the Slipper Bearing in Axial Piston Pumps
,”
Measurement
,
122
(
10
), pp.
66
72
.
19.
Jiang
,
J. H.
,
Wang
,
Z. B.
, and
Li
,
G. Q.
,
2020
, “
The Impact of Slipper Microstructure on Slipper-Swashplate Lubrication Interface in Axial Piston Pump
,”
IEEE Access
,
8
, pp.
222865
222875
.
20.
Hooke
,
C. J.
, and
Li
,
K. Y.
,
1989
, “
The Lubrication of Slippers in Axial Piston Pumps and Motors: The Effect of Tilting Couples
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
203
(
5
), pp.
343
350
.
21.
Zhang
,
J. H.
,
Lyu
,
F.
,
Xu
,
B.
,
Huang
,
W. D.
,
Wu
,
W.
,
Guo
,
Z. M.
,
Xu
,
H. G.
, and
Huang
,
X. C.
,
2021
, “
Simulation and Experimental Investigation on Low Wear Rate Surface Contour of Piston/Cylinder Pair in an Axial Piston Pump
,”
Tribol. Int.
,
162
(
7
), pp.
107
127
.
22.
Wu
,
H. C.
,
Zhao
,
L. M.
,
Ni
,
S. L.
, and
He
,
Y. Y.
,
2020
, “
Study on Friction Performance and Mechanism of Slipper Pair Under Different Paired Materials in High-Pressure Axial Piston Pump
,”
Friction
,
8
(
5
), pp.
957
969
.
23.
Ivantysynova
,
R.
, and
Weber
,
J.
,
2018
, “
Investigation of the Thermal Behavior in the Lubricating Gap of an Axial Piston Pump With Respect to Lifetime
,”
Eleventh International Fluid Power Conference
,
Aachen, Germany
,
Mar. 19–21
, pp.
68
83
.
24.
Ivantysynova
,
R.
,
Shorbagy
,
A.
, and
Weber
,
J.
,
2018
, “
Analysis of the Run-In Behavior of Axial Piston Pumps
,”
2018 Global Fluid Power Society PhD Symposium (GFPS)
,
Samara, Russia
,
July 18–20
, IEEE, pp.
1
9
.
25.
Xiang
,
G.
,
Goltsberg
,
R.
, and
Etsion
,
I.
,
2024
, “
Role of Intermolecular Potential in Adhesive Wear Behaviors for Elastic-Plastic Spherical Microcontacts
,”
Tribol. Int.
,
199
, pp.
110054
.
26.
Shi
,
C.
,
Wang
,
S. P.
,
Wang
,
X. J.
, and
Zhang
,
Y. X.
,
2018
, “
Variable Load Failure Mechanism for High-Speed Load Sensing Electro-Hydrostatic Actuator Pump of Aircraft
,”
Chin. J. Aeronaut.
,
31
(
5
), pp.
949
964
.
27.
Shi
,
C.
,
Wang
,
S. P.
,
Wang
,
X. J.
, and
Shi
,
J.
,
2021
, “
Wear Modelling of Slipper/Swashplate Pair for Highspeed Piston Pump Under Transient Lubrication Conditions
,”
IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)
,
Chengdu, China
,
Aug. 1–4
, IEEE, pp.
2124
2129
.
28.
Yin
,
F. L.
,
Chen
,
Y. T.
,
Ma
,
Z. H.
,
Nie
,
S. L.
, and
Ji
,
H.
,
2023
, “
Investigation on Mixed Thermalelstohydrodynamic Lubrication Behavior of Slipper/Swash Plate Interface in Water Hydraulic Axial Piston Pump
,”
Tribol. Int.
,
189
(
6
), p.
108896
.
29.
Agelet De Saracibar
,
C.
, and
Chimenti
,
M.
,
1999
, “
On the Numerical Modeling of Frictional Wear Phenomena
,”
Comput. Methods Appl. Mech. Eng.
,
177
(
3
), pp.
401
426
.
30.
Bi
,
Z.
,
Mueller
,
D. W.
, and
Zhang
,
C. W.
,
2021
, “
State of the Art of Friction Modelling at Interfaces Subjected to Elastrohydrodynamic Lubrication (EHL)
,”
Friction
,
9
(
2
), pp.
207
227
.
31.
Zhao
,
K. P.
,
Wang
,
C. L.
,
He
,
T.
,
Luo
,
G.
,
Qin
,
Y.
, and
Fang
,
S. Y.
,
2024
, “
Theoretical and Experimental Study on Lubrication and Friction of Slipper Pair of Valve Distribution Piston Pump Based on FVM-TRD Coupling Method
,”
Tribol. Int.
,
194
(
11
), p.
109456
.
32.
Lyu
,
F.
,
Zhang
,
J. H.
,
Sun
,
G. M.
,
Xu
,
B.
,
Pan
,
M.
,
Huang
,
X. C.
, and
Xu H
,
G.
,
2020
, “
Research on Wear Prediction of Piston/Cylinder Pair in Axial Piston Pumps
,”
Wear
,
456
(
2
), p.
203338
.
33.
Zhao
,
J. G.
,
Fu
,
Y. L.
,
Ma
,
J. M.
,
Fu
,
J.
,
Chao
,
Q.
, and
Wang
,
Y.
,
2021
, “
Review of Cylinder Block/Valve Plate Interface in Axial Piston Pumps: Theoretical Models, Experimental Investigations
,”
Chin. J. Aeronaut.
,
34
(
1
), pp.
111
134
.
34.
Ma
,
H. Q.
,
Liu
,
W.
,
Wu
,
D. W.
,
Shan
,
H. M.
,
Xia
,
S. Q.
, and
Xia
,
Y. M.
,
2023
, “
Modeling and Analysis of the Leakage Performance of the Spherical Valve Plate Pair in Axial Piston Pumps
,”
Eng. Sci. Technol.
,
45
(
11
), p.
101498
.
35.
Jiao
,
B. W.
,
Ma
,
X.
,
Wang
,
Y. Q.
,
Lyu
,
X. Y.
,
Li
,
T. Y.
, and
Liu
,
Z. G.
,
2023
, “
A Fluid-Structure Coupled Transient Mixed Lubrication Model for Piston Ring Lubrication Property Analysis With CMFF Method
,”
Int. J. Mech. Sci.
,
252
(
16
), p.
108377
.
36.
Hong
,
S. H.
, and
Shin
,
J. H.
,
2024
, “
Lubrication Modeling of the Reciprocating Piston With High Lateral Load and Various Conditions in a Swash Plate-Type Piston Pump
,”
Lubricants
,
12
(
2
), p.
55
.
37.
Yang
,
F.
, and
Pei
,
Y.-C.
,
2022
, “
A Thermal Stress Stiffening Method for Vibration Suppression of Rotating Flexible Disk With Mass-Spring-Damper System Loaded
,”
Int. J. Mech. Sci.
,
213
(
8
), p.
106860
.
38.
Zhang
,
Y.
,
Lou
,
Z. C.
,
Wei
,
F.
,
Fu
,
W.
,
Lin
,
S.
,
Hu
,
L.
, and
He
,
W.
,
2024
, “
Hybrid Lubrication Model Study of Slip Ring Combination Seal Under the Influence of Frictional Heat
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
238
(
4
), pp.
426
449
.
39.
Gao
,
L. N.
,
Liu
,
S.
,
Xu
,
Z. H.
,
Li
,
B.
,
Cui
,
Y.
, and
Meng
,
X. H.
,
2024
, “
Tribo-Dynamic Modeling Method and Application to Three-Dimensional Flexible PRL System
,”
Int. J. Mech. Sci.
,
277
(
22
), p.
109446
.
40.
Hu
,
Y. Z.
,
Li
,
N.
, and
Tonder
,
K.
,
1991
, “
A Dynamic System Model for Lubricated Sliding Abrasion and Running-In
,”
ASME J. Tribol.
,
113
(
3
), pp.
499
505
.
41.
Chen
,
Z.
, and
Etsion
,
I.
,
2019
, “
The Elastic-Plastic Contact Behavior of Rough Surfaces With Hard Coatings
,”
Tribol. Int.
,
134
(
43
), pp.
435
442
.
42.
Ishikawa
,
S.
,
Yamaoka
,
T.
, and
Kijimoto
,
S.
,
2024
, “
Modal Analysis for Incompressible Fluid Flow
,”
Eur J Mech. B/Fluids
,
105
(
23
), pp.
295
305
.
43.
Tang
,
H.
,
Ren
,
Y.
, and
Kumar
,
A.
,
2022
, “
Effects of Surface Roughness on the Mixed Thermal Elastrohydrodynamic Lubrication Characteristics of Surface Textured Slipper Bearing in Axial Piston Pump
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
236
(
12
), pp.
2305
2327
.
44.
Wang
,
Z. J.
,
Zhang
,
J. J.
,
Wang
,
H. L.
,
Guo
,
D.
,
Zuo
,
K. C.
, and
Mao
,
Z. W.
,
2024
, “
Visco-Elastrohydrodynamic Lubrication and Wear Model Amended by Deformation Velocity
,”
Int. J. Mech. Sci.
,
279
(
4
), p.
109508
.
45.
Li
,
F. Y.
,
Wang
,
D. Y.
,
Lv
,
Q. B.
,
Haidak
,
G.
, and
Zheng
,
S. S.
,
2019
, “
Prediction on the Lubrication and Leakage Performance of the Piston–Cylinder Interface for Axial Piston Pumps
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
233
(
16
), pp.
5887
5896
.
46.
Archard
,
J. F.
,
1980
, “Wear Theory and Mechanisms,”
Wear Control Handbook
,
M. B.
Peterson
, and
W. O.
Winer
, eds.,
American Society of Mechanical Engineers
,
New York
, pp.
35
80
.
47.
Jihai
,
J.
, and
Weipeng
,
Y.
,
2019
, “
An Approach to Predict Wear Distribution of Valve Plate in Elasto-Hydrodynamic Lubrication
,”
IEEE Access
,
7
, pp.
86789
86797
.
48.
Priest
,
M.
, and
Taylor
,
C. M.
,
2000
, “
Automobile Engine Tribology—Approaching the Surface
,”
Wear
,
241
(
2
), pp.
193
203
.
49.
Priest
,
M.
,
Dowson
,
D.
, and
Taylor
,
C. M.
,
1997
, “
Prediction of the Lubrication and Wear of Piston Rings—Theoretical Model
,” World Tribology Congress, Abstracts of Papers, September, 82.
50.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
51.
Ransenola
,
T.
,
Shang
,
L. Z.
, and
Vacca
,
A.
,
2022
, “
A Study of Piston and Slipper Spin in Swashplate Type Axial Piston Machines
,”
Tribol. Int.
,
167
(
10
), pp.
221
237
.
52.
Geng
,
Y.
,
Zhu
,
K. D.
,
Qi
,
S. M.
,
Liu
,
Y.
,
Zhao
,
Y.
,
Yu
,
R. F.
,
Chen
,
W.
, and
Liu
,
H.
,
2024
, “
A Deterministic Mixed Lubrication Model for Parallel Rough Surfaces Considering Wear Evolution
,”
Tribol. Int.
,
194
(
77
), p.
109443
.
53.
Meng
,
X. X.
,
Ge
,
C.
,
Liang
,
H.
,
Lu
,
X.
, and
Ma
,
X.
,
2021
, “
Lubrication Characteristics of the Slipper–Swash-Plate Interface in a Swash-Plate-Type Axial Piston Pump
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
235
(
4
), pp.
639
651
.
54.
Yan
,
K. H.
, and
Huang
,
D.
,
2024
, “
Analysis of Lubricating Characteristics of High-Pressure Radial Piston Pump With Thermo-Elastrohydrodynamic Coupling
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
238
(
6
), pp.
2407
2424
.
55.
Yuanying
,
D.
,
Bojian
,
C.
,
Qinxin
,
C.
,
Wenshan
,
W.
, and
Haiyan
,
P.
,
2024
, “
Lubrication and Leakage Characteristic Research of Aviation Plunger Pump Considering Plunger Deflection
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
238
(
5
), pp.
559
568
.
56.
Zhao
,
K. P.
,
He
,
T.
,
Wang
,
C. L.
,
Chen
,
Q. M.
, and
Li
,
Z. P.
,
2022
, “
Lubrication Characteristics Analysis of Slipper Pair of Digital Valve Distribution Axial Piston Pump
,”
Adv. Mech. Eng.
,
14
(
3
).
You do not currently have access to this content.