Abstract

Copper–molybdenum alloys exhibit important potential for applications in conductive and wear-resistant material. In this research, Cu–Mo coatings were fabricated by laser cladding, and the current-carrying tribological properties were investigated against 7075 aluminum alloy under currents ranging from 0 to 20 A. The results indicate that the wear resistance of the coatings is primarily affected by Mo content, and the friction coefficient is greatly influenced by Cu content. Applied current slightly reduces the wear rate but significantly increases the friction coefficient. Under the current test conditions, the friction coefficient of the friction pairs fluctuates within 0.48–0.75. The wear rate of the coatings and aluminum alloy counterparts fluctuates within (3.7–4.5) × 10−5 mm3 N−1 m−1 and (8.2–18.0) × 10−5 mm3 N−1 m−1, respectively. As the electric current increases, the wear mechanism transitions from abrasive wear to slight adhesive wear accompanied by plastic deformation.

References

1.
Zuo
,
X.
,
Xie
,
W.
, and
Zhou
,
Y.
,
2022
, “
Influence of Electric Current on the Wear Topography of Electrical Contact Surfaces
,”
ASME J. Tribol.
,
144
(
7
), p.
071702
.
2.
Einat
,
M.
, and
Orbach
,
Y.
,
2023
, “
A Multi-stage 130 m/s Reluctance Linear Electromagnetic Launcher
,”
Sci. Rep.
,
13
(
1
), p.
218
.
3.
Yang
,
H.
,
Li
,
C.
,
Liu
,
Y.
,
Fu
,
L.
,
Jiang
,
G.
,
Cui
,
X.
,
Hu
,
B.
, and
Wang
,
K.
,
2021
, “
Study on the Delamination Wear and Its Influence on the Conductivity of the Carbon Contact Strip in Pantograph-Catenary System Under High-Speed Current-Carrying Condition
,”
Wear
,
477
, p.
203823
.
4.
Mei
,
G.
,
2020
, “
Tribological Performance of Rigid Overhead Lines Against Pantograph Sliders Under DC Passage
,”
Tribol. Int.
,
151
, p.
106538
.
5.
Wang
,
X.
,
Song
,
K.
,
Duan
,
J.
,
Feng
,
J.
,
Huang
,
T.
, and
Xing
,
J.
,
2024
, “
Current-Carrying Tribological Behavior and Wear Mechanism of CuW Composites With Different W Content
,”
Tribol. Int.
,
200
, p.
110125
.
6.
Guo
,
W.
,
Bai
,
R.
,
Guan
,
T.
,
He
,
Y.
, and
Liu
,
J.
,
2023
, “
Microstructure Characteristics and Tribological Properties of Gradient Cu-MoS2 Self-lubricating Coating Fabricated by Selective Laser Melting of Ink-Printed Metal Nanoparticles
,”
ASME J. Tribol.
,
145
(
12
), p.
121401
.
7.
Xu
,
J.
,
Zhou
,
L.
,
Ma
,
G.
,
Li
,
G.
,
Zhao
,
H.
,
Li
,
Y.
,
Tan
,
N.
, and
Wang
,
H.
,
2024
, “
Laser Cladding Mo-Based Coatings on Copper Alloys to Improve the Current-Carrying Tribological Properties of Cu/Al Friction Pairs
,”
Surf. Coat. Technol.
,
487
, p.
130989
.
8.
Lin
,
X.
,
Liu
,
R.
,
Chen
,
J.
,
Xiong
,
X.
, and
Liao
,
N.
,
2021
, “
Study on Current-Carrying Friction and Wear Properties of Copper-Graphite Brush Material Reinforced by Organosilicon
,”
J. Mater. Res. Technol.
,
12
, pp.
365
375
.
9.
Wang
,
X.
,
Yao
,
P.
,
Li
,
Y.
,
Zhou
,
H.
,
Xiao
,
Y.
,
Deng
,
M.
,
Kang
,
L.
, and
Zhou
,
P.
,
2023
, “
Effects of Material Transfer Evolution on Tribological Behavior in CuCrZr Alloy Paired With 7075 Al Alloy Under Current-Carrying
,”
Tribol. Int.
,
179
, p.
107960
.
10.
Lin
,
Y.
,
Li
,
J. Z.
,
Pan
,
J.
,
Zhang
,
C.
,
Ni
,
D. R.
,
Chen
,
Q.
,
Song
,
W. L.
,
Lu
,
J. Y.
,
Li
,
B.
, and
Liu
,
L.
,
2023
, “
Current-Carrying Wear Behavior and the Interface Evolution of the Cu/Al Tribological Pair
,”
Eng. Fail. Anal.
,
153
, p.
107549
.
11.
Zhu
,
Z.
,
Ren
,
X.
,
Jin
,
K.
,
Tan
,
H.
,
Zhu
,
S.
,
Cheng
,
J.
,
Guo
,
J.
, and
Yang
,
J.
,
2024
, “
Current-Carrying Tribological Properties and Wear Mechanisms of Mo-Containing Cu Alloy Coatings Produced by Laser Cladding
,”
Tribol. Int.
,
200
, p.
110107
.
12.
Ng
,
K. W.
,
Man
,
H. C.
,
Cheng
,
F. T.
, and
Yue
,
T. M.
,
2007
, “
Laser Cladding of Copper With Molybdenum for Wear Resistance Enhancement in Electrical Contacts
,”
Appl. Surf. Sci.
,
253
(
14
), pp.
6236
6241
.
13.
Srinivasan
,
D.
, and
Subramanian
,
P. R.
,
2007
, “
Kirkendall Porosity During Thermal Treatment of Mo–Cu Nanomultilayers
,”
Mater. Sci. Eng. A
,
459
(
1
), pp.
145
150
.
14.
Liu
,
T.
,
Liu
,
X.
,
Cao
,
J.
,
Feng
,
X.
,
Li
,
S.
, and
Liu
,
J.
,
2023
, “
Amorphous Interlayer Assisted Ductility of Mo–Cu Alloy
,”
Mater. Des.
,
231
, p.
112010
.
15.
Hu
,
X.
,
Hu
,
H.
,
Lai
,
R.
,
Xie
,
Q.
, and
Zhi
,
Y.
,
2025
, “
Cyclic Warm Rolling: A Path to Superior Properties in MoCu Composites
,”
Int. J. Refract. Met. Hard Mater.
,
126
, p.
106926
.
16.
Tan
,
J.
,
Su
,
Y.
,
Tang
,
H.
,
Hu
,
T.
,
Yu
,
Q.
,
Tursun
,
R.
, and
Zhang
,
X.
,
2016
, “
Effect of Calcined Parameters on Microstructure and Electrical Conductivity of 10Sc1CeSZ
,”
J. Alloys Compd.
,
686
, pp.
394
398
.
17.
Srinithi
,
A. K.
,
Sepehri-Amin
,
H.
,
Takagiwa
,
Y.
, and
Hono
,
K.
,
2022
, “
Effect of Microstructure on the Electrical Conductivity of p-Type Fe–Al–Si Thermoelectric Materials
,”
J. Alloys Compd.
,
903
, p.
163835
.
18.
Liang
,
Y.
,
Lei
,
Q.
,
Zhang
,
X.
,
Jiang
,
D.
, and
Li
,
Y.
,
2022
, “
Microstructure Evolution and Properties of a Cu-5 wt% Mo Alloy With High Conductivity and High Anti-Soften Temperature
,”
Mater. Today Commun.
,
32
, p.
104134
.
19.
Minasyan
,
T.
,
Kirakosyan
,
H.
,
Aydinyan
,
S.
,
Liu
,
L.
,
Kharatyan
,
S.
, and
Hussainova
,
I.
,
2018
, “
Mo–Cu Pseudoalloys by Combustion Synthesis and Spark Plasma Sintering
,”
J. Mater. Sci.
,
53
(
24
), pp.
16598
16608
.
20.
Sun
,
J. Y.
,
Zhang
,
L. C.
,
Liu
,
R.
,
Xie
,
Z. M.
,
Yang
,
J. F.
,
Xie
,
X. F.
,
Wang
,
X. P.
,
Fang
,
Q. F.
,
Liu
,
C. S.
, and
Wu
,
X.
,
2024
, “
Effect of Mo Nanoparticles on Microstructure and Mechanical Properties of Cu Alloys by Self-propagating and Spark Plasma Sintering
,”
Mater. Sci. Eng. A
,
916
, p.
147305
.
21.
Yao
,
J.-T.
,
Li
,
C.-J.
,
Li
,
Y.
,
Chen
,
B.
, and
Huo
,
H.-B.
,
2015
, “
Relationships Between the Properties and Microstructure of Mo–Cu Composites Prepared by Infiltrating Copper Into Flame-Sprayed Porous Mo Skeleton
,”
Mater. Des.
,
88
, pp.
774
780
.
22.
Song
,
P.
,
Cheng
,
J.
,
Wan
,
L.
,
Zhao
,
J.
,
Wang
,
Y.
, and
Cai
,
Y.
,
2009
, “
Preparation and Characterization of Mo-15 Cu Superfine Powders by a Gelatification-Reduction Process
,”
J. Alloys Compd.
,
476
(
1
), pp.
226
230
.
23.
Zhou
,
L.
,
Ma
,
G.
,
Zhao
,
H.
,
Mou
,
H.
,
Xu
,
J.
,
Wang
,
W.
,
Xing
,
Z.
,
Li
,
Y.
,
Guo
,
W.
, and
Wang
,
H.
,
2024
, “
Research Status and Prospect of Extreme High-Speed Laser Cladding Technology
,”
Opt. Laser Technol.
,
168
, p.
109800
.
24.
Guan
,
W.
,
Gao
,
M.
,
Lv
,
H.
,
Yuan
,
J.
,
Chen
,
D.
,
Zhu
,
T.
,
Fang
,
Y.
, et al
,
2021
, “
Laser Cladding of Layered Zr/Cu Composite Cathode With Excellent Arc Discharge Homogeneity
,”
Surf. Coat. Technol.
,
421
, p.
127454
.
25.
Arias-González
,
F.
,
del Val
,
J.
,
Comesaña
,
R.
,
Penide
,
J.
,
Lusquiños
,
F.
,
Quintero
,
F.
,
Riveiro
,
A.
,
Boutinguiza
,
M.
, and
Pou
,
J.
,
2017
, “
Laser Cladding of Phosphor Bronze
,”
Surf. Coat. Technol.
,
313
, pp.
248
254
.
26.
Tyrer
,
N.
,
Yang
,
F.
,
Barber
,
G.
,
Pang
,
B.
, and
Wang
,
B.
,
2022
, “
Tribological Behavior of Electrical Connector Coatings Under Reciprocating Motion
,”
ASME J. Tribol.
,
144
(
9
), p.
091401
.
27.
Zhao
,
H.
,
Wang
,
W.
,
Xu
,
X.
,
Zhong
,
H.
,
Wei
,
D.
, and
Liu
,
X.
,
2025
, “
Understanding Electric Current Effects on Tribological Behaviors of Instantaneous Current-Carrying Pair With Recurrence Plot
,”
ASME J. Tribol.
,
147
(
5
), p.
051101
.
28.
Balic
,
E. E.
, and
Blanchet
,
T. A.
,
2016
, “
Simple Thermal Model to Select Electromagnetic Launcher Tribomaterials
,”
ASME J. Tribol.
,
138
(
4
), p.
041102
.
29.
Ma
,
J.
,
Cui
,
H.
,
Tan
,
H.
,
Zhu
,
S.
,
Cheng
,
J.
,
Li
,
Q.
, and
Yang
,
J.
,
2024
, “
Tribological Properties and Wear Mechanisms of Laser Cladded Cu–Mo Coatings at 25–500 °C
,”
ASME J. Tribol.
,
146
(
9
), p.
091402
.
30.
Bumgardner
,
C. H.
,
Croom
,
B. P.
,
Song
,
N.
,
Zhang
,
Y.
, and
Li
,
X.
,
2020
, “
Low Energy Electroplasticity in Aluminum Alloys
,”
Mater. Sci. Eng. A
,
798
, p.
140235
.
31.
Zhang
,
Q.
,
Li
,
X.
,
Ma
,
Q.
,
Zhang
,
Q.
,
Bai
,
H.
,
Yi
,
W.
,
Liu
,
J.
,
Han
,
J.
, and
Xi
,
G.
,
2017
, “
A Metallic Molybdenum Dioxide With High Stability for Surface Enhanced Raman Spectroscopy
,”
Nat. Commun.
,
8
(
1
), p.
14903
.
32.
Carpick
,
R. W.
, and
Salmeron
,
M.
,
1997
, “
Scratching the Surface: Fundamental Investigations of Tribology With Atomic Force Microscopy
,”
Chem. Rev.
,
97
(
4
), pp.
1163
1194
.
33.
Xia
,
W.
,
Patil
,
P. P.
,
Liu
,
C.
,
Dehm
,
G.
, and
Brinckmann
,
S.
,
2023
, “
A Novel Microwall Sliding Test Uncovering the Origin of Grain Refined Tribolayers
,”
Acta Mater.
,
246
, p.
118670
.
34.
Wilshire
,
B.
, and
Battenbough
,
A. J.
,
2007
, “
Creep and Creep Fracture of Polycrystalline Copper
,”
Mater. Sci. Eng. A
,
443
(
1
), pp.
156
166
.
35.
Rabinowicz
,
E.
,
1982
, “
The Temperature Rise at Sliding Electrical Contacts
,”
Wear
,
78
(
1
), pp.
29
37
.
36.
Kuhlmann-Wilsdorf
,
D.
,
1987
, “
Temperatures at Interfacial Contact Spots: Dependence on Velocity and on Role Reversal of Two Materials in Sliding Contact
,”
ASME J. Tribol.
,
109
(
2
), pp.
321
329
.
You do not currently have access to this content.