Abstract

The hydrodynamic face seal of the main coolant pump (MCP) of a nuclear power plant operates under hydrodynamic lubrication. At low idle speed, the seal faces may touch, transitioning the lubrication regime from hydrodynamic to mixed. A new equation for the film thickness on the coning face with a wavy-tilt-dam (WTD) is developed, applying the average Reynolds equation with the Jacobson–Floberg–Olsson (JFO) boundary and using a statistical asperity contact model. Surface roughness and coning influence the minimum film thickness, load-carrying capacity, and friction coefficient, determining the shift from mixed to hydrodynamic lubrication. Under ΔP = 0.8 MPa and 20 r/min, the no-coning WTD face seal remains noncontact at σ = 0.1 μm, while it makes contact at σ = 0.56, 0.35, and 0.28 μm. The WTD face seals with fconing = 1.0 μm at all σ are in contact. Smoother surfaces reduce the summit contact probability, promoting the seal face to lift off. Coning decreases the hydrodynamic effect, leading to lower hmin and a higher chance of rough summit contact. A test rig is built, and the idling process is simulated 50 times, revealing a contact wear pattern at σ = 0.1 μm with fconing = 1.0 μm, while no wear pattern is observed with low coning. The 0–0.3 μm coning value and σ = 0.1 μm are appropriate for WTD face seals under mixed lubrication. This research provides a basis for the stable operation of hydrodynamic WTD face seals in MCP.

References

1.
Liu
,
Y.
,
Liu
,
W.
,
Li
,
Y. J.
,
Liu
,
X. F.
, and
Wang
,
Y. M.
,
2015
, “
Mechanism of a Wavy-Tilt-Dam Mechanical Seal Under Different Working Conditions
,”
Tribol. Int.
,
90
, pp.
43
54
.
2.
Liu
,
W.
,
Liu
,
Y.
,
Wang
,
Y. M.
, and
Peng
,
X. D.
,
2011
, “
Parametric Study on a Wavy-Tilt-Dam Mechanical Face Seal in Reactor Coolant Pumps
,”
Tribol. Trans.
,
54
(
6
), pp.
878
886
.
3.
Ye
,
D.
,
Zhai
,
F. L.
,
Luo
,
Y. M.
,
Wu
,
J. C.
,
Chen
,
J. L.
,
Lai
,
X. D.
, and
Tian
,
W.
,
2024
, “
Guide Vane Angle and Reactor Coolant Pump Performance During Idling
,”
Ann. Nucl. Energy
,
207
, p.
110720
.
4.
Liu
,
X. J.
,
Liu
,
J. S.
,
Wang
,
D. Z.
,
Yang
,
Z.
, and
Zhang
,
J. G.
,
2009
, “
Test Study on Safety Features of Station Blackout Accident for Nuclear Main Pump
,”
Atomic Energy Sci. Technol.
,
43
(
5
), pp.
448
451
.
5.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
6.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
,
101
(
2
), pp.
220
229
.
7.
Tripp
,
J. H.
,
1983
, “
Surface Roughness Effects in Hydrodynamic Lubrication: The Flow Factor Method
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
458
463
.
8.
Wu
,
C. W.
, and
Zheng
,
L. Q.
,
1989
, “
An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor
,”
ASME J. Tribol.
,
111
(
1
), pp.
188
191
.
9.
Payvar
,
P.
, and
Salant
,
R. F.
,
1992
, “
A Computational Method for Cavitation in a Wavy Mechanical Seal
,”
ASME J. Tribol.
,
114
(
1
), pp.
199
204
.
10.
Jakobsson
,
B.
, and
Floberg
,
L.
,
1957
, “The Finite Journal Bearing Considering Vaporization,” Transactions of Chalmers University of Technology Gothenburg, Report No. 190.
11.
Olsson
,
K. O.
,
1965
, “Cavitation in Dynamically Loaded Bearings,” Transactions of Chalmers University of Technology Gothenburg, Report No. 308.
12.
Xue
,
B.
,
Wei
,
C.
, and
Hu
,
J. B.
,
2017
, “
Study of Separation Characteristics of Micro-groove Rotary Seal Considering Different Cavitation Boundary Conditions
,”
Tribol. Lett.
,
65
(
4
), p.
119
.
13.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2009
, “
On the Prediction of Cavitation in Dimples Using a Mass-Conservative Algorithm
,”
ASME J. Tribol.
,
131
(
4
), p.
041702
.
14.
Hao
,
M. M.
,
Yang
,
W. J.
,
Cao
,
H. C.
,
Xu
,
L. S.
,
Wang
,
Y. L.
, and
Li
,
Y. F.
,
2018
, “
Analysis of Dynamic Characteristics of Spiral Groove Liquid Film Seal Considering Cavitation
,”
Ind. Lubr. Tribol.
,
70
(
9
), pp.
1619
1629
.
15.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. Lond. Ser. A
,
295
(
1442
), pp.
300
319
.
16.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
17.
Zhao
,
Y. W.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
1999
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
18.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.
19.
Kogut
,
L.
, and
Etsion
,
I.
,
2004
, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
,”
ASME J. Tribol.
,
126
(
1
), pp.
34
40
.
20.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
21.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
,
39
(
9
), pp.
906
914
.
22.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2012
, “
Asperity Micro-contact Models as Applied to the Deformation of Rough Line Contact
,”
Tribol. Int.
,
52
, pp.
61
74
.
23.
Ruan
,
B.
,
Salant
,
R. F.
, and
Green
,
I.
,
1997
, “
A Mixed Lubrication Model of Liquid/Gas Mechanical Face Seals
,”
Tribol. Trans.
,
40
(
4
), pp.
647
657
.
24.
Lebeck
,
A. O.
,
1999
, “
Mixed Lubrication in Mechanical Face Seals With Plain Faces
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
213
(
3
), pp.
163
175
.
25.
Brunetière
,
N.
, and
Tournerie
,
B.
,
2012
, “
Numerical Analysis of a Surface-Textured Mechanical Seal Operating in Mixed Lubrication Regime
,”
Tribol. Int.
,
49
, pp.
80
89
.
26.
Wen
,
Q. F.
,
Liu
,
Y.
,
Huang
,
W. F.
,
Suo
,
S. F.
, and
Wang
,
Y. M.
,
2013
, “
The Effect of Surface Roughness on Thermal-Elasto-hydrodynamic Model of Contact Mechanical Seals
,”
Sci. China Phys. Mech.
,
56
(
10
), pp.
1920
1929
.
27.
Tang
,
L. M.
,
Pan
,
Y. C.
,
Tan
,
X.
,
Jin
,
L.
, and
Wang
,
Y.
,
2022
, “
Analytical and Experimental Research on Reactor Coolant Pump Mechanical Seals With Hydrodynamic Deep-Grooves
,”
Proceedings of the ICONE, Virtual, Online, Volume 10: Advanced Methods of Manufacturing for Nuclear Reactors and Components
,
Aug. 8–12
, p.
V010T10A012
, No. ICONE29-91237.
28.
Liang
,
Z.
,
Liu
,
Y.
, and
Hui
,
Y.
,
2024
, “
Study on Working Mechanism and Performance of Deep Groove Seal at High Temperature and High Speed in Mixed Lubrication
,”
Tribol. Int.
,
194
, p.
109470
.
29.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2011
, “
Performance Analysis of Full-Film Textured Surfaces With Consideration of Roughness Effects
,”
ASME J. Tribol.
,
133
(
2
), p.
021704
.
30.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2011
, “
Investigation of Tribological Behaviors of Annular Rings With Spiral Groove
,”
Tribol. Int.
,
44
(
12
), pp.
1610
1619
.
31.
Hu
,
J. B.
,
Wei
,
C.
, and
Li
,
X. Y.
,
2013
, “
A Uniform Cross-Speed Model of End-Face Seal Ring With Spiral Grooves for Wet Clutch
,”
Tribol. Int.
,
62
, pp.
8
17
.
32.
Cochain
,
J.
,
Brunetière
,
N.
,
Parry
,
A.
,
Denoix
,
H.
, and
Maoui
,
A.
,
2019
, “
Experimental and Numerical Study of Wavy Mechanical Face Seals Operating Under Pressure Inversions
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
234
(
2
), pp.
247
260
.
33.
Green
,
I.
, and
Barnsby
,
R. M.
,
2001
, “
A Parametric Analysis of the Transient Forced Response of Noncontacting Coned-Face Gas Seals
,”
ASME J. Tribol.
,
124
(
1
), pp.
151
157
.
34.
Su
,
W. T.
,
Li
,
Y.
,
Wang
,
Y. H.
,
Zhang
,
Y. N.
,
Li
,
X. B.
, and
Ma
,
Y.
,
2020
, “
Influence of Structural Parameters on Wavy-Tilt-Dam Hydrodynamic Mechanical Seal Performance in Reactor Coolant Pump
,”
Renew. Energy
,
166
, pp.
210
221
.
35.
Young
,
L. A.
, and
Lebeck
,
A. O.
,
1989
, “
Design and Testing of a Wavy-Tilt-Dam Mechanical Face Seal
,”
Lubr. Eng.
,
45
(
5
), pp.
322
329
.
36.
Lebeck
,
A. O.
,
1991
,
Principles and Design of Mechanical Face Seals
,
John Wiley
,
New York
.
37.
Bonneau
,
D.
,
Fatu
,
A.
, and
Souchet
,
D.
,
2014
,
Mixed Lubrication in Hydrodynamic Bearings
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
38.
Larsson
,
R.
,
2009
, “
Modelling the Effect of Surface Roughness on Lubrication in All Regimes
,”
Tribol. Int.
,
42
(
4
), pp.
512
516
.
You do not currently have access to this content.