Graphical Abstract Figure

Carbon coating generated by flame catalytic deposition technique enhanced significantly the tribology properties of NiTi shape memory alloy

Graphical Abstract Figure

Carbon coating generated by flame catalytic deposition technique enhanced significantly the tribology properties of NiTi shape memory alloy

Close modal

Abstract

In this work, for surface protection of NiTi alloy, an amorphous carbon layer was directly deposited onto it via a self-catalytic flame coating method. The effect of the flame coating time on the physicochemical structure and mechanical hardness of the products was investigated, as well as its friction and wear resistance performance. The Vickers microhardness of the carbon-coated NiTi alloy decreased with the flame coating time, which was identified to be caused by the inherent thermal treatment during the flame coating process. The tribological test results indicated that both the friction coefficient (COF) and specific wear-rate of NiTi alloy were significantly reduced after the flame coating of the alloy. After direct flame treatment of the alloy for 20 min, 82.8% and 91.4% reduction in the COF and specific wear-rate could be achieved, respectively. The wear mechanisms of the coated NiTi alloy were found to be involved with the oxidation wear, adhesive wear, and the carbon transfer film, all of which had an important influence on the friction process. The carbon layer prepared by the flame coating method as a protective layer of NiTi alloy will greatly promote its versatile applications.

References

1.
Huang
,
X.
,
Kang
,
N.
,
Wang
,
P.
, and
El Mansori
,
M.
,
2024
, “
Thermal Effects on Wear Behavior of Additively Manufactured NiTi Shape Memory Alloys
,”
Chin. J. Aeronaut.
,
38
(
1
), p.
103033
.
2.
Kwok
,
C. T.
,
Wong
,
P. K.
, and
Man
,
H. C.
,
2021
, “
Enhancement in Corrosion and Electrical Wear Resistance of Copper via Laser Surface Alloying With NiTi
,”
Surf. Coat. Technol.
,
408
, p.
126804
.
3.
Zhao
,
M.
,
Qing
,
H.
,
Wang
,
Y.
,
Liang
,
J.
,
Zhao
,
M.
,
Geng
,
Y.
,
Liang
,
J.
, and
Lu
,
B.
,
2021
, “
Superelastic Behaviors of Additively Manufactured Porous NiTi Shape Memory Alloys Designed With Menger Sponge-Like Fractal Structures
,”
Mater. Des.
,
200
, p.
109448
.
4.
Xu
,
J. L.
,
Jin
,
X. F.
,
Luo
,
J. M.
, and
Zhong
,
Z. C.
,
2014
, “
Fabrication and Properties of Porous NiTi Alloys by Microwave Sintering for Biomedical Applications
,”
Mater. Lett.
,
124
, pp.
110
112
.
5.
Sharma
,
N.
,
Jangra
,
K.
, and
Raj
,
T.
,
2015
, “
Applications of Nickel-Titanium Alloy
,”
J. Eng. Techol.
,
5
(
1
), p.
1
.
6.
Dai
,
D.
,
Zhou
,
D.
,
He
,
L.
,
Wang
,
C.
, and
Zhang
,
C.
,
2022
, “
Graphene Oxide Nanocoating for Enhanced Corrosion Resistance, Wear Resistance and Antibacterial Activity of Nickel Titanium Shape Memory Alloy
,”
Surf. Coat. Technol.
,
431
, p.
128012
.
7.
Zeng
,
Z.
,
Liu
,
Y.
,
Guo
,
R.
, and
Li
,
K.
,
2019
, “
Friction and Wear Behaviours of In Situ Reduced Graphene Oxide Reinforced Zirconia Ceramic
,”
Int. J. Refract. Met. Hard Mater.
,
79
, pp.
164
170
.
8.
Shi
,
X.
,
Liskiewicz
,
T. W.
,
Beake
,
B. D.
,
Chen
,
J.
, and
Wang
,
C.
,
2020
, “
Tribological Performance of Graphite-Like Carbon Films With Varied Thickness
,”
Tribol. Int.
,
149
, p.
105586
.
9.
Fan
,
S. Y.
,
Xiao
,
S.
,
Lin
,
S. S.
,
Su
,
F. H.
,
Su
,
Y. F.
, and
Chu
,
P. K.
,
2023
, “
Macroscale Superlubricity and Durability of In Situ Grown Hydrogenated Graphene Coatings
,”
Chem. Eng. J.
,
459
, p.
141521
.
10.
Tong
,
L. B.
,
Zhang
,
J. B.
,
Xu
,
C.
,
Wang
,
X.
,
Song
,
S. Y.
,
Jiang
,
Z. H.
,
Kamado
,
S.
,
Cheng
,
L. R.
, and
Zhang
,
H. J.
,
2016
, “
Enhanced Corrosion and Wear Resistances by Graphene Oxide Coating on the Surface of Mg-Zn-Ca Alloy
,”
Carbon
,
109
, pp.
340
351
.
11.
Singh
,
S.
,
Chen
,
X.
,
Zhang
,
C.
,
Gautam
,
R. K.
,
Tyagi
,
R.
, and
Luo
,
J.
,
2020
, “
Tribological Performance of Steel With Multi-Layer Graphene Grown by Low-Pressure Chemical Vapor Deposition
,”
ASME J. Tribol.
,
142
(
12
), p.
122101
.
12.
Singh
,
S.
,
Chen
,
X.
,
Zhang
,
C.
,
Gautam
,
R. K.
,
Tyagi
,
R.
, and
Luo
,
J.
,
2020
, “
Nickel-Catalyzed Direct Growth of Graphene on Bearing Steel (GCr15) by Thermal Chemical Vapor Deposition and Its Tribological Behavior
,”
Appl. Surf. Sci.
,
502
, p.
144135
.
13.
Zou
,
J.
,
Guan
,
J.
,
Wang
,
X.
, and
Du
,
X.
,
2023
, “
Corrosion and Wear Resistance Improvements in NiCu Alloys Through Flame-Grown Honeycomb Carbon and CVD of Graphene Coatings
,”
Surf. Coat. Technol.
,
473
, p.
130040
.
14.
Wang
,
X.
,
Zou
,
J.
,
Lin
,
J.
, and
Du
,
X.-S.
,
2021
, “
Promoting the Corrosion Resistance of Carbon Steel via Facile Catalytic Deposition of Novel Hierarchical Carbon Film Layer in an Ethanol Combustion Flame
,”
Diamond Relat. Mater.
,
120
, p.
108714
.
15.
Zou
,
J.
,
Wang
,
X.
,
Zhang
,
P.
, and
Du
,
X.
,
2022
, “
Ultrafast Flame Coating of Carbon and Chemical Vapor Deposition of Graphene on NiTi Alloy to Enhance Its Corrosion Resistance
,”
Diamond Relat. Mater.
,
128
, p.
109231
.
16.
Kachoei
,
M.
,
Nourian
,
A.
, and
Divband
,
B.
, “
Zinc-Oxide Nanocoating for Improvement of the Antibacterial and Frictional Behavior of Nickel-Titanium Alloy
,”
Nanomedicine
,
11
(
19
), pp.
2511
2527
.
17.
Kosec
,
T.
,
Močnik
,
P.
, and
Legat
,
A.
,
2014
, “
The Tribocorrosion Behaviour of NiTi Alloy
,”
Appl. Surf. Sci.
,
288
, pp.
727
735
.
18.
Farvizi
,
M.
,
Ebadzadeh
,
T.
,
Vaezi
,
M. R.
,
Yoon
,
E. Y.
,
Kim
,
Y. J.
,
Kang
,
J. Y.
,
Kim
,
H. S.
, and
Simchi
,
A.
,
2015
, “
Effect of Starting Materials on the Wear Performance of NiTi-Based Composites
,”
Wear
,
334–335
, pp.
35
43
.
19.
Levintant-Zayonts
,
N.
,
Starzynski
,
G.
,
Kopec
,
M.
, and
Kucharski
,
S.
,
2019
, “
Characterization of NiTi SMA in Its Unusual Behaviour in Wear Tests
,”
Tribol. Int.
,
137
, pp.
313
323
.
20.
Javid
,
M.
,
Qu
,
X.
,
Huang
,
F.
,
Li
,
X.
,
Farid
,
A.
,
Shah
,
A.
,
Duan
,
Y.
,
Zhang
,
Z.
,
Dong
,
X.
, and
Pan
,
L.
,
2021
, “
In-Situ Synthesis of SiC/Fe Nanowires Coated With Thin Amorphous Carbon Layers for Excellent Electromagnetic Wave Absorption in GHz Range
,”
Carbon
,
171
, pp.
785
797
.
21.
Li
,
K.
,
Liu
,
Q.
,
Cheng
,
H.
,
Hu
,
M.
, and
Zhang
,
S.
,
2021
, “
Classification and Carbon Structural Transformation From Anthracite to Natural Coaly Graphite by XRD, Raman Spectroscopy, and HRTEM
,”
Spectrochim. Acta A Mol. Biomol. Spectrosc.
,
249
, p.
119286
.
22.
Hsu
,
W.
,
Polatidis
,
E.
,
Šmíd
,
M.
,
Casati
,
N.
,
Van Petegem
,
S.
, and
Van Swygenhoven
,
H.
,
2018
, “
Load Path Change on Superelastic NiTi Alloys: In Situ Synchrotron XRD and SEM DIC
,”
Acta Mater.
,
144
, pp.
874
883
.
23.
Zhao
,
Q.
,
Mou
,
Z.
,
Zhang
,
B.
,
Zhang
,
X.
,
Wang
,
Z.
,
Wang
,
K.
,
Gao
,
K.
, and
Jia
,
Q.
,
2020
, “
Revealing the Corrosion Resistance of Amorphous Carbon Films Under Heat Shock via Annealing
,”
Diamond Relat. Mater.
,
102
, p.
107692
.
24.
Julie
,
S.
,
Wasekar
,
N. P.
,
Parida
,
P. K.
,
Santra
,
S.
,
David
,
C.
, and
Kamruddin
,
M.
,
2022
, “
Effect of Grain Size on the Thermal Stability of Electrodeposited Nanocrystalline Nickel: X-Ray Diffraction Studies
,”
Thin Solid Films
,
745
, p.
139114
.
25.
Bararpour
,
S.
,
Aval
,
H.
,
Jamaati
,
R.
, and
Javidani
,
M.
,
2024
, “
Effect of Heat Treatment Before Fast Multiple Rotation Rolling on Friction Surfaced Al–Si–Cu Alloy
,”
J. Mater. Res. Technol.
,
33
, pp.
940
953
.
26.
Dalan
,
F.
,
Sobrinho
,
A.
,
Nishihora
,
R.
,
Santos
,
S.
,
Martins
,
G.
, and
Cardoso
,
K.
,
2025
, “
Effect of Nb and Ti Additions on Microstructure, Hardness and Wear Properties of AlCoCrFeNi High-Entropy Alloy
,”
J. Alloys Compd.
,
1010
, p.
177117
.
27.
Tyrer
,
N.
,
Yang
,
F.
,
Barber
,
G.
,
Pang
,
B.
, and
Wang
,
B.
,
2022
, “
Tribological Behavior of Electrical Connector Coatings Under Reciprocating Motion
,”
ASME J. Tribol.
,
144
(
9
), p.
091401
.
28.
Chen
,
Z.
,
Chen
,
W.
,
Zhu
,
S.
,
Cheng
,
J.
,
Tan
,
H.
, and
Yang
,
J.
,
2022
, “
Tribological Properties of Cu–25Zn–5Al–3Fe–3Mn Alloy at High Temperatures
,”
ASME J. Tribol.
,
144
(
12
), p.
121701
.
29.
Chen
,
J.
,
Li
,
J.
,
Xiong
,
D.
,
He
,
Y.
,
Ji
,
Y.
, and
Qin
,
Y.
,
2016
, “
Preparation and Tribological Behavior of Ni-Graphene Composite Coating Under Room Temperature
,”
Appl. Surf. Sci.
,
361
, pp.
49
56
.
You do not currently have access to this content.