Abstract

In this study, we conducted a comprehensive investigation on the role of surface topography in the anti-icing process in terms of water-ice transition prevention and bond strength deterioration. The uniform microstructures were evaluated based on the unit cell definition to document the different contact ratios while maintaining the same wettability. The survey results revealed a large difference in bond strength among the same wettability samples when it is interestingly proportional to the area fraction, confirming the importance of textured structures in ice removal performance. In addition, a thermal conduction approach was proposed to qualitatively determine the phase transition time of water volume forming on the functional surface. The real-time investigation results agreed well with the theoretical calculation, emphasizing the importance of considering surface parameters and suggesting rational designs for ice-phobic surfaces.

References

1.
Heydari
,
G.
,
2016
, “
Toward Anti-icing and De-icing Surfaces: Effects of Surface Topography and Temperature
,”
PhD thesis
,
KTH Royal Institute of Technology
, pp.
1
98
.
2.
Zeng
,
D.
,
Li
,
Y.
,
Liu
,
H.
,
Yang
,
Y.
,
Peng
,
L.
,
Zhu
,
C.
, and
Zhao
,
N.
,
2023
, “
Superhydrophobic Coating Induced Anti-icing and Deicing Characteristics of an Airfoil
,”
Colloids Surf. A
,
660
(
1
), p.
130824
.
3.
Xu
,
F.
,
Li
,
D.
,
Gao
,
P.
,
Zang
,
W.
,
Duan
,
Z.
, and
Ou
,
J.
,
2023
, “
Numerical Simulation of Two-Dimensional Transmission Line Icing and Analysis of Factors That Influence Icing
,”
J. Fluids Struct.
,
118
(
1
), p.
103858
.
4.
Shahriari
,
M.
, and
Aydin
,
M. E.
,
2018
, “Proceedings of the AHFE 2017 International Conference on Safety Management and Human Factors,”
Advances in Safety Management and Human Factors
,
P.
Arezes
, ed.,
Springer International Publishing
,
Cham
, pp.
77
85
.
5.
Li
,
L.
,
Liu
,
Y.
,
Zhang
,
Z.
, and
Hu
,
H.
,
2019
, “
Effects of Thermal Conductivity of Airframe Substrate on the Dynamic Ice Accretion Process Pertinent to UAS Inflight Icing Phenomena
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1184
1195
.
6.
Zhao
,
Q.
,
Liu
,
Z.
,
Yu
,
P.
,
Chen
,
L.
, and
Guan
,
F.
,
2022
, “Review of Transmission Line Icing and Anti-icing Technologies BT,”
The Proceedings of the 16th Annual Conference of China Electrotechnical Society
,
Sept. 24–26
,
X.
Liang
,
Y.
Li
,
J.
He
, and
Q.
Yang
, eds.,
Springer Nature Singapore
,
Singapore
, pp.
1224
1232
.
7.
Wu
,
X.
,
Liao
,
Y.
,
Yao
,
L.
,
Zha
,
Y.
,
Li
,
R.
,
Wang
,
Y.
,
Zhao
,
D.
,
Mo
,
S.
, and
Huang
,
W.
,
2022
, “
A Non-percolative RGO/XLPE Composite With High Electrothermal Performance at High Voltage and Effective De/Anti-icing for Transmission-Lines
,”
Compos. Sci. Technol.
,
230
, p.
109772
.
8.
Hann
,
R.
,
Enache
,
A.
,
Nielsen
,
M. C.
,
Stovner
,
B. N.
,
van Beeck
,
J.
,
Johansen
,
T. A.
, and
Borup
,
K. T.
,
2021
, “
Experimental Heat Loads for Electrothermal Anti-icing and De-icing on UAVs
,”
Aerospace
,
8
(
3
), p.
83
.
9.
Lu
,
C.
,
Zhang
,
Z.
,
Qiang
,
Y.
,
Zhao
,
F.
, and
Wang
,
D.
,
2023
, “
A Hydrophobic and Sustainable Anti-icing Sand Fog Seal for Asphalt Pavement: Its Preparation and Characterization
,”
Constr. Build. Mater.
,
401
, p.
132918
.
10.
Rui
,
Y.
,
Yu
,
B.
,
Liu
,
Y.
,
Fu
,
L.
,
Liu
,
J.
, and
Lu
,
G.
,
2024
, “
Hydrophilic Coating With Anti-fogging and Anti-icing Properties
,”
J. Macromol. Sci. Part B: Phys.
,
63
(
1
), pp.
47
59
.
11.
Liu
,
Y.
,
Wu
,
Y.
,
Ma
,
Y.
,
Wang
,
P.
,
Yu
,
B.
,
Pei
,
X.
,
Liu
,
S.
, and
Zhou
,
F.
,
2024
, “
Reversible Thermochromic and Heat Storage Coating for Adaptive De/Anti-icing and Thermal Regulation
,”
Chem. Eng. J.
,
482
, p.
148837
.
12.
Liu
,
Y.
,
Wang
,
Q.
,
Yi
,
X.
,
Chen
,
N.
,
Ren
,
J.
, and
Li
,
W.
,
2024
, “
An Anti-icing Scaling Method for Wind Tunnel Tests of Aircraft Thermal Ice Protection System
,”
Chin. J. Aeronaut.
,
37
(
6
), pp.
1
6
.
13.
Chen
,
J.
,
Sun
,
Z.
,
Zhang
,
W.
,
Shi
,
X.
, and
Yuan
,
J.
,
2023
, “
Performance of Anti-icing Stone Mastic Asphalt: Laboratory and Field Investigation
,”
Int. J. Pavement Eng.
,
24
(
2
), p.
2108544
.
14.
Do
,
T. C.
,
Nguyen
,
T. V.
,
Bui
,
H.
,
Pham
,
T. B.
,
Mogilevtsev
,
D. S.
,
Le Tuan
,
T.
, and
Pham
,
V. H.
,
2023
, “
Light Enhancement of Green Up-Conversion Emission From Er-Doped Silica Microspheres by Carbon Quantum Dot Coatings
,”
J. Fluoresc.
,
34
, pp.
2003
2008
.
15.
Wang
,
G.
,
Xu
,
H.
, and
Pei
,
B.
,
2023
, “
An Intelligent Approach for Flight Risk Prediction Under Icing Conditions
,”
Chin. J. Aeronaut.
,
36
(
6
), pp.
109
127
.
16.
Hanh
,
V. T. H.
,
Chi
,
D. T.
,
Ha
,
C. V.
,
An
,
P. M.
,
Thi Minh Thuy
,
N.
,
Thi Trang
,
B.
,
Mai
,
D. T.
,
Sonemany
,
S.
, and
Nguyen
,
T.-B.
,
2022
, “
Icephobic Approach on Hierarchical Structure Polymer Thin-Film
,”
Adv. Nat. Sci. Nanosci. Nanotechnol.
,
13
(
1
), p.
15004
.
17.
Feng
,
E.
,
Li
,
J.
,
Zheng
,
G.
,
Yan
,
Z.
,
Li
,
X.
,
Gao
,
W.
,
Ma
,
X.
, and
Yang
,
Z.
,
2021
, “
Long-Term Anti-freezing Active Organohydrogel Based Superior Flexible Supercapacitor and Strain Sensor
,”
ACS Sustain. Chem. Eng.
,
9
(
21
), pp.
7267
7276
.
18.
Zehui
,
Z.
,
Zelinlan
,
W.
,
Guang
,
L.
,
Dengke
,
C.
,
Kaiteng
,
Z.
,
Yantong
,
Z.
,
Jichen
,
C.
,
Shize
,
S.
,
Xiaolin
,
L.
, and
Huawei
,
C.
,
2023
, “
Liquid-Like Slippery Surface With Passive-Multi Active Strategy Integration for Anti-icing/De-icing
,”
Chem. Eng. J.
,
474
, p.
145541
.
19.
Zhou
,
X.
,
Sun
,
Y.
, and
Liu
,
J.
,
2021
, “
Designing Anti-icing Surfaces by Controlling Ice Formation
,”
Adv. Mater. Interfaces
,
8
(
17
), p.
2100327
.
20.
Zhou
,
L.
,
He
,
W.
,
Wang
,
M.
, and
Hou
,
X.
,
2022
, “
Enhanced Phase-Change Heat Transfer by Surface Wettability Control
,”
ChemSusChem
,
15
(
6
), p.
e202102531
.
21.
Okulov
,
V.
,
Kabardin
,
I.
,
Mukhin
,
D.
,
Stepanov
,
K.
, and
Okulova
,
N.
,
2021
, “
Physical De-icing Techniques for Wind Turbine Blades
,”
Energies
,
14
(
20
), p.
6750
.
22.
He
,
Z.
,
Zhuo
,
Y.
,
Zhang
,
Z.
, and
He
,
J.
,
2021
, “
Design of Icephobic Surfaces by Lowering Ice Adhesion Strength: A Mini Review
,”
Coatings
,
11
(
11
), p.
1343
.
23.
Yamazaki
,
M.
,
Jemcov
,
A.
, and
Sakaue
,
H.
,
2021
, “
A Review on the Current Status of Icing Physics and Mitigation in Aviation
,”
Aerospace
,
8
(
7
), p.
188
.
24.
Li
,
X.
,
Wang
,
G.
,
Moita
,
A. S.
,
Zhang
,
C.
,
Wang
,
S.
, and
Liu
,
Y.
,
2020
, “
Fabrication of Bio-inspired Non-fluorinated Superhydrophobic Surfaces With Anti-icing Property and Its Wettability Transformation Analysis
,”
Appl. Surf. Sci.
,
505
, p.
144386
.
25.
Wu
,
L.
,
Liu
,
P.
,
Hua
,
X.
,
Guo
,
Z.
, and
Liu
,
W.
,
2024
, “
Photothermal Superhydrophobic Membrane Based on Breath Figure: Anti-icing and Deicing
,”
Chem. Eng. J.
,
480
, p.
147553
.
26.
He
,
H.
,
Zhou
,
S.
,
Du
,
J.
,
Yang
,
H.
, and
Chen
,
D.
,
2024
, “
Anti-icing and Corrosion Resistance of Superhydrophobic Coatings by Precision Machining and One-Step Electrodeposition on Mg–Li Alloy
,”
Colloids Surf. A
,
685
, p.
133294
.
27.
Zhao
,
Y.
,
Wen
,
K.
,
Wang
,
J.
,
Yang
,
Z.
, and
Qin
,
M.
,
2023
, “
Preparation, Characterisation, and Anti-icing Properties of Superhydrophobic Coatings on Asphalt Mixture
,”
Int. J. Pavement Eng.
,
24
(
2
), p.
2118271
.
28.
Huang
,
X.
,
Sun
,
M.
,
Shi
,
X.
,
Shao
,
J.
,
Jin
,
M.
,
Liu
,
W.
,
Zhang
,
R.
,
Huang
,
S.
, and
Ye
,
Y.
,
2023
, “
Chemical Vapor Deposition of Transparent Superhydrophobic Anti-icing Coatings With Tailored Polymer Nanoarray Architecture
,”
Chem. Eng. J.
,
454
, p.
139981
.
29.
Wang
,
X.-Y.
,
Wang
,
S.
,
Su
,
J.-F.
,
Shao
,
R.-Y.
, and
Xing
,
Q.-Y.
,
2024
, “
Biomimetic Anti-icing Epoxy Coating Based on Controlled-Secreting Hydrophobic Small Molecules in Microcapsules Through Shrinkable Gel Under Low Temperature
,”
Colloids Surf. A
,
691
, p.
133892
.
30.
Upot
,
N. V.
,
Fazle Rabbi
,
K.
,
Khodakarami
,
S.
,
Ho
,
J. Y.
,
Kohler Mendizabal
,
J.
, and
Miljkovic
,
N.
,
2023
, “
Advances in Micro and Nanoengineered Surfaces for Enhancing Boiling and Condensation Heat Transfer: A Review
,”
Nanoscale Adv.
,
5
(
5
), pp.
1232
1270
.
31.
Guo
,
L.
,
Tang
,
G. H.
, and
Kumar
,
S.
,
2019
, “
Droplet Morphology and Mobility on Lubricant-Impregnated Surfaces: A Molecular Dynamics Study
,”
Langmuir
,
35
(
49
), pp.
16377
16387
.
32.
Truong
,
M. X.
,
Hanh
,
V. T. H.
, and
Nguyen
,
T.-B.
,
2022
, “
The Integrated Contribution of Surface Topology to Anti-icing Effectiveness
,”
Surf. Topogr. Metrol. Prop.
,
10
(
1
), p.
15036
.
33.
Li
,
H.
,
You
,
Z.
, and
Zhang
,
H.
,
2022
, “
Experimental Investigation on the Heat Transfer Enhancement of Steam Condensation on Tube With Hydrophilic-Hydrophobic Hybrid Surface
,”
J. Phys. Conf. Ser.
,
2280
(
1
), p.
12059
.
34.
Nguyen
,
V.-H.
,
Nguyen
,
B. D.
,
Pham
,
H. T.
,
Lam
,
S. S.
,
Vo
,
D.-V. N.
,
Shokouhimehr
,
M.
,
Vu
,
T. H. H.
,
Nguyen
,
T.-B.
,
Kim
,
S. Y.
, and
Le
,
Q. V.
,
2021
, “
Anti-icing Performance on Aluminum Surfaces and Proposed Model for Freezing Time Calculation
,”
Sci. Rep.
,
11
(
1
), p.
5458
.
35.
Jia
,
Y.
,
He
,
Q.
,
Liu
,
Y.
,
Xu
,
Y.
,
Wang
,
J.
, and
Li
,
A.
,
2024
, “
Anti-icing System Based on Multi-level Micro-nano and Electric Heating Dual Structure
,”
Colloids Surf. A
,
683
, p.
133105
.
36.
Cui
,
Y.
,
Zhang
,
L.
,
Xing
,
C.
, and
Tan
,
Y.
,
2024
, “
Anti-icing Properties and Application of Superhydrophobic Coatings on Asphalt Pavement
,”
Constr. Build. Mater.
,
419
, p.
135452
.
You do not currently have access to this content.